Preview

Health and Ecology Issues

Advanced search

CHARACTERISTICS OF M.TUBERCULOSIS DRUG RESISTANCE DETERMINED BY MOLECULAR GENETIC AND PHENOTYPIC METHODS

https://doi.org/10.51523/2708-6011.2018-15-3-12

Abstract

Objective: to determine the genetic and phenotypic drug resistance of M . tuberculosis to first-line and second-line anti-TB drugs. Material and methods. Gene mutations in 247 strains of M. tuberculosis (MBT) associated with drug resistance to isoniazid, rifampicin, fluoroquinolones, and aminoglycosides were studied. Genetic resistance of a tuberculosis causative agent was determined by means of LPA (GenoType® MTBDRsl MTBDRplus and MTBDRsl, ver.2.0). The results of the study are confirmed by the determination of phenotypic drug resistance in the automated system BACTEC ™ MGIT ™ 960. Results. The drug resistant MBT strains circulating around Gomel region have been determined, and the high reliability of molecular and genetic determination of MBT drug resistance has been confirmed by microbiological methods (isoniazid and rifampicin - 97.2 %, fluoroquinolones - 85.1 %, aminoglycosides - 92.3 %). A considerable number of drug resistant MTB strains with gene mutations (45.1 %) which are not included in the GenoType® MTBDRsl system were detected. Conclusion. Тhe considerable genetic variability of drug-resistant MBT strains requires complex application of all the methods of drug resistance testing.

About the Authors

V. N. Bondarenko
Gomel State Medical University
Belarus


V. A. Shtanze
Gomel Regional Tuberculosis Clinical Hospital
Belarus


L. V. Zolotukhina
Gomel Regional Tuberculosis Clinical Hospital
Belarus


References

1. World Health Organization. Global tuberculosis control: WHO report 2011. WHO/HTM/ TB/2011.16. World Health Organization, Geneva, Switzerland; 2011.34 р.

2. GenoType® MTBDRplus. Руководство к пользованию. IFU304A02. Молекулярно-генетическое исследование для идентификации комплекса M. tuberculosis и определение его устойчивости к рифампицину и изониазиду в клинических образцах и культивированных образцах; 2012. 63 с.

3. GenoType® MTBDRsl. Руководство к пользованию. IFU317A02. Молекулярно генетическое исследование для идентификации комплекса M. tuberculosis и определения его устойчивости к фторхинолонам и аминогликозидам/циклическим пептидам из образцов мокроты или культивированных образцов; 2015. 13 с.

4. Brossier F, Veziris N, TruffotPernot C. Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low and highlevel resistance. J Clin Microbiol 2006;44(10):3659-64.

5. Pitaksajjakul P, Wongwit W, Punprasit W. Mutations in the gyrA and gyrB genes of fluoroquinoloneresistant Mycobacterium tuberculosis from TB patients in Thailand. Southeast Asian J Trop Med. Public Health. 2005;36(4):228-36.

6. Lau R, Ho P, Kao R. Molecular characterization of fluoroquinolone resistance in Mycobacterium tuberculosis: functional analysis of gyrA mutation at position 74. Antimicrob Аgents Chemother. 2011;55(2):608-14.

7. Malik S, Willby M, Sikes D. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One. 2012;7(6):110.

8. Nosova E, Bukatina A, Isaeva Yu. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin. J Med Microbiol. 2013;62(1):108-13.

9. Via LE, Cho SN, Hwang S. Polymorphisms associated with resistance and crossresistance to aminoglycosides and capreomycin in Mycobacterium tuberculosis isolates from South Korean Patients with drugresistant tuberculosis. J Clin Microbiol. 2010; 48(2):402-11.

10. Zaunbrecher MA, Sikes RD, Metchock B. Overexpression of the chromosomally encoded aminoglycoside acetyltransferaseeis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Nat. Acad. Sci. USA. 2009;106(47):20004-9.

11. Jugheli L, Bzekalava N, de Rijk P. High level of crossresistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob. Agents Chemother. 2009;53(12):5064-68.

12. Адамбеков ДА, Адамбекова АД, Кадыров АС. Частота встречаемости мутаций и их сочетаний в генах, ответственных за множественную лекарственную устойчивость М. tuberculosis в Кыргызской Республике при исследовании GenoТype MTBDR plus. Здравоохранение (Минск).2017;2:14-7.

13. MGIT Procedure Manual for BactecTM MGITTM 960 TB System (Also applicable for Manual MGIT) Mycobacteria Growht Indicator Tube (MGIT). Culture and Drug Susceptibility Demonstration Projects.Foundation for Innovative New Diagnostics. [Электронный ресурс] [дата обращения: 2018 Июн 17]. Availablefrom: http:// www.ipaqt.org/wpcontent/uploads/2013/02/MGITProcedureManual.pdf.

14. Носова ЕЮ, Хахалина АА, Галкина КЮ, Краснова МА, Крылова ЛЮ, Сафонова СГ. Определение множественной и широкой лекарственной устойчивости Mycobacterium tuberculosis с помощью различных молекулярных тестсистем и BACTEC™ MGIT™ 960. Туберкулез и Социально-Значимые Заболевания. 2015;3:11-7.


Review

For citations:


Bondarenko V.N., Shtanze V.A., Zolotukhina L.V. CHARACTERISTICS OF M.TUBERCULOSIS DRUG RESISTANCE DETERMINED BY MOLECULAR GENETIC AND PHENOTYPIC METHODS. Health and Ecology Issues. 2018;(3):61-66. (In Russ.) https://doi.org/10.51523/2708-6011.2018-15-3-12

Views: 376


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-0967 (Print)
ISSN 2708-6011 (Online)