The choice of modern methods for processing digital and text data in the field of medicine, particularly in lens pathology and aphakia
https://doi.org/10.51523/2708-6011.2024-21-4-18
Abstract
This article provides key data on potential use of artificial intelligence in cataract surgery. The analysis is based on more than 150 sources published over the last 10 years, related to cataract surgery and the use of artificial intelligence in medicine, particularly in the surgery of aphakia. Scientific and medical databases such as PubMed, Google Scholar, Springer, and eLibrary.ru were used. A total of 25 articles were selected for in-depth study.
Keywords
About the Authors
V. L. KrasilnikovaBelarus
Viktoria L. Krasilnikova, Doctor of Medical Sciences, Professor, Professor at the Department of Ophthalmology
Minsk
O. N. Dudich
Belarus
Oksana N. Dudich, Candidate of Medical Sciences, Associate Professor at the Department of Ophthalmology
Minsk
S. M. Gridjushko
Belarus
Sergey M. Gridjushko, Ophthalmologist at the Department of Eye Microsurgery No. 2
Gomel
References
1. ическая офтальмология. 2019;19(4):206-210. Petrov SY, Kozlova IV, Poleva RP. Cataract: a modern view on conservative approaches to treatment. Clin Ophthalmol. 2019;19(4):206-210. (In Russ.).
2. Kiseleva TN, Oganesyan OG, Romanova LI, et al. Optical biometry of the eye: principle and diagnostic capabilities of the method. Russ Pediatr Ophthalmol. 2017;12(1):35-42. (In Russ.). DOI: https://doi.org/10.18821/1993-1859-2017-12-1-35-42
3. Kulikov AN, Kokareva EV, Kotova NA. Comparison of eye biometry results using different instruments. Pacific Med J. 2017;2(68):53-54. (In Russ.)
4. Makovkin EM. Clinical significance of the deviation of the visual axis of the eyeball from its anatomical axis. Vestn VolGMU. 2008;1(25):77-79. (In Russ.).
5. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19(1):1-18. DOI: https://doi.org/10.1186/s12874-019-0681-4
6. Guidance for industry:Electronic source data in clinical investigations, 2013. [Electronic resource]. [accessed 2024 Sep 2]. Available from: https://rx-360.org/wp-content/uploads/2018/08/Guidance-Electronic-Source-Data-in-ClinicalInvestigations_2013.pdf
7. Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013. DOI: https://doi.org/10.1001/jama.2013.393
8. Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991;115(11):843-848. DOI: https://doi.org/10.7326/0003-4819-115-11-843
9. Maclin PS, Dempsey J, Brooks J, Rand J. Using neural networks to diagnose cancer. J Med Syst. 1991;15(1):11-19. DOI: https://doi.org/10.1007/BF00993877
10. Gardner GG, Keating D, Williamson TH, Elliott AT. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol. 1996;11:940- 944. DOI: https://doi.org/10.1136/bjo.80.11.940
11. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444. DOI: https://doi.org/10.1038/nature14539
12. Bali J, Kant A, editors. Basics of Biostatistics: A Manual for the Medical Practitioners. 1nd ed. New Delhi: Jaypee Brothers Medical Publishers; 2017. 556 p.
13. Parsian M, editor. Data Algorithms. Sebastopol, CA: O’Reilly Media, Inc.; 2015. 778 p.
14. Ma Y, Guo G, editors. Support Vector Machines Applications. New York: Springer; 2014. 302 p.
15. Patel V, Shortliffe E, Stefanelli M, Szolovits P, Berthold M, Bellazzi R, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med. 2009;46:5-17. DOI: https://doi.org/10.1016/j.artmed.2008.07.017
16. Shahid N, Rappon T, Berta W. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS One. 2019;14(2):1-22. DOI: https://doi.org/10.1371/journal.pone.0212356
17. Ladas JG, Siddiqui AA, Devgan U, Jun AS. A 3-D ‘Super Surface’ combining modern intraocular lens formulas to generate a ‘super formula’ and maximize accuracy. JAMA Ophthalmol. 2015;133(12):1431-6. DOI: https://doi.org/10.1001/jamaophthalmol.2015.3832
18. Lietman T, Eng J, Katz J, Quigley HA. Neural networks for visual field analysis: How do they compare with other algorithms. J Glaucoma. 1999;8:77-80.
19. Li F, Wang Z, Qu G, Song D, Yuan Y, Xu Y, et al. Automatic differentiation of glaucoma visual field from nonglaucoma visual field using deep convolutional neural network. BMC Med Imaging. 2018;35(18):1-7. DOI:https://doi.org/10.1186/s12880-018-0273-5
20. Yousefi S, Kiwaki T, Zheng Y, Sugiura H, Asaoka R, Murata H, et al. Detection of longitudinal visual field progression in glaucoma using machine learning. Am J Ophthalmol. 2018;193:71-79. DOI: https://doi.org/10.1016/j.ajo.2018.06.007
21. Wen JC, Lee CS, Keane PA, Xiao S, Rokem AS, Chen PP, et al. Forecasting future Humphrey visual fields using deep learning. PLoS One. 2019;14(2):1-14. DOI: https://doi.org/10.1371/journal.pone.0214875
22. Mardin CY, Peters A, Horn F, Jünemann AG, Lausen B. Improving glaucoma diagnosis by the combination of perimetry and HRT measurements. J Glaucoma. 2006;15(4):299-305. DOI: https://doi.org/10.1097/01.ijg.0000212232.03664.ee
23. Burdon KP, Mitchell P, Lee A, Healey PR, White AJ, Rochtchina E, et al. Association of open-angle glaucoma loci with incident glaucoma in the Blue Mountains eye study. Am J Ophthalmol. 2015;159:31-36. DOI: https://doi.org/10.1016/j.ajo.2014.09.020
24. Bali J, Garg R, Bali R. Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/ AI bioethics framework is required. Indian J Ophthalmol. 2019;67:3-6. DOI: https://doi.org/10.4103/ijo.IJO_1292_18
Review
For citations:
Krasilnikova V.L., Dudich O.N., Gridjushko S.M. The choice of modern methods for processing digital and text data in the field of medicine, particularly in lens pathology and aphakia. Health and Ecology Issues. 2024;21(4):167-174. (In Russ.) https://doi.org/10.51523/2708-6011.2024-21-4-18