Possibilities for prediction of congenital fetal malformations and chromosomal abnormalities based on the determination of the levels of free amino acids and their nitrogen-containing derivatives in blood plasma of pregnant women
https://doi.org/10.51523/2708-6011.2020-17-3-23
Abstract
Objective: to determine the possibilities for prediction and diagnosis of congenital fetal malformations and chromosomal abnormalities on the basis of the study of the levels of amino acids and their nitrogen-containing derivatives in blood plasma of pregnant women with pathological conditions requiring artificial termination of pregnancy. Material and methods. The content of free amino acids and their nitrogen-containing derivatives was studied in 104 pregnant women having congenital malformations and chromosomal abnormalities in their fetuses at 13-22 weeks` gestation (group I) and 25 women with physiological pregnancy (group II). The amino acid level was determined by the high-performance liquid chromatography method. Results. The levels of 14 out of the 26 studied amino acids in the blood plasma of the pregnant women of group I were statistically higher than those of the women in group II. ROC analysis was used to determine six amino acids (glycine, α-aminobutyric acid, hydroxylysine, glutamic acid, citrulline, serine) and their threshold values which with high accuracy (85.3 %) allow of predicting congenital fetal malformations and chromosomal abnormalities. A prognostic model making it possible to determine high probability of congenital fetal anomalies based on the determination of the concentration of 5-hydroxytryptophan, glycine, asparagine, and serine in blood plasma of pregnant women has been developed. Conclusion. The study of the levels of amino acids and their nitrogen-containing derivatives in plasma of pregnant women at 13-22 weeks` gestation can be used for prenatal diagnosis of congenital fetal malformations and chromosomal abnormalities, as well as used as an additional criterion for making the decision on the necessity for artificial termination of pregnancy upon fetal medical indications.
About the Authors
L. N. KedaBelarus
Lyudmila N. Keda — Chief specialist at the Department of Medical Care for Mothers and Children of the Main Directorate of the Organization of Medical Care under the Ministry of Health of the Republic of Belarus
e-mail: ludmila_keda@mail.ru
A. V. Naumov
Belarus
Aleksandr V. Naumov — Associate Professor at the Biochemistry Department of the educational institution «Grodno State Medical University»
V. YU. Smirnov
Belarus
Vitaly Yu. Smirnov — Senior researcher at the Research Laboratory of the educational institution «Grodno State Medical University»
References
1. Мельникова ВЮ, Додхоева МФ. Современные методы пренатальной диагностики и профилактики врожденных пороков развития центральной нервной системы плода. Вестник Авиценны. 2016;1:109-16.
2. Дюбкова ТП. Врожденные и наследственные болезни у детей: (причины, проявления, профилактика). Минск, РБ: Асобины; 2008. 48 с.
3. Погорелова ТН, Гунько ВО, Линде ВО. Трансплацентарный переход аминокислот и его влияние на «внутриутробное программированаие» постнатальной патологии Вопросы Гинекологии Акушерства и Перинатологии. 2013;12(5):46-52.
4. Северина ЕС, ред. Биохимия. М, РФ: ГЭОТАР-МЕД; 2004. 748 с.
5. Шейбак ВМ, Горецкая МВ. Аминокислоты и иммунная система. Москва, РФ: Пальмир; 2010. 356 с.
6. Наумов АВ. Роль нарушений процессов метилирования и обмена метионина в патогенезе заболеваний человека. Журнал Гродненского Государственного Медицинского Университета. 2007;1(17):4-7.
7. Хлыбова СВ, Циркин ВИ. Содержание свободных аминокислот при физиологическом течении гестационного процесса и ряде акушерских осложнений. Медицинский Альманах. 2008;5:68-75.
8. Гутикова ЛВ. Содержание аминокислот в плазме крови у женщин с гестозом до родов и после них. Российский Вестник Акушера Гинеколога. 2012;6:10-3.
9. Плоцкий АР, Егорова ТЮ, Сидорова ЛН. Возможности прогнозирования и диагностики врожденных пороков развития плода на основе определения уровня гомоцистеина в плазме крови беременных женщин. Журнал Гродненского Государственного Медицинского Университета. 2009;1(25):56-8.
10. Реброва ОЮ. Статистический анализ медицинских данных. Применение пакета прикладных программ STATISTICA. Москва, РФ: Медиа Сфера; 2006. 312 с.
11. Кеда ЛН. и др. Способ прогнозирования врожденных аномалий развития плода. Изобретения. Полезные модели. Промышленные образцы. Топологии интегральных микросхем. 2020;4:46-4.
12. Hall JE. Guyton and Hall textbook of medical physiology. 13th edition. Philadelphia, PA: Elsevier; 2016. 1097 р.
13. Thame MM et al. Adaptation of in vivo amino acid kinetics facilitates increased amino acid availability for fetal growth in adolescent and adult pregnancies alike. Br J Nutr. 2014;112:1779-86.
14. Kalhan S. et al. Glucose turnover and gluconeogenesis in human pregnancy. J Clin Invest. 1997;100(7):1775-81.
15. Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab. 2020;32(2):154-75.
16. Camelo JS, Jorge SM, Martinez FE. Amino acid composition of parturient plasma, the intervillous space of the placenta and the umbilical vein of term newborn infants. Braz J Med Biol Res. 2004;37:711-7.
Review
For citations:
Keda L.N., Naumov A.V., Smirnov V.Yu. Possibilities for prediction of congenital fetal malformations and chromosomal abnormalities based on the determination of the levels of free amino acids and their nitrogen-containing derivatives in blood plasma of pregnant women. Health and Ecology Issues. 2020;(3):152-158. (In Russ.) https://doi.org/10.51523/2708-6011.2020-17-3-23