Preview

Health and Ecology Issues

Advanced search

Level of matrix metalloproteinase-3 and tissue inhibitor of matrix metalloproteinase-1 and -3 in patients with chronic kidney disease in stage C5 and in patients with anterior abdominal wall hernias

https://doi.org/10.51523/2708-6011.2024-21-4-07

Abstract

Objectives. To determine the level of matrix metalloproteinase-3 (MMP-3), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), and tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) in the plasma of patients with chronic kidney disease (CKD) in stage C5, and in patients with anterior abdominal wall hernias.

Materials and methods. The object of the study were patients in the terminal stage of chronic kidney disease and patients with primary anterior abdominal wall hernias. MMP-3, TIMP-1 and TIMP-3 concentrations were determined in plasma by enzyme immunoassay.

Results. There was a statistically significant increase in the level of MMP-3, the median of which was 185,77 ng/ml, with the ratio with patients of other analysed groups – 45,09 ng/ml and 41,05 ng/ml (p˂0,001) in plasma of patients with CKD on dialysis replacement therapy. The plasma TIMP-1 level (158,85 ng/ml) was statistically significantly higher in patients with C5 stage CKD than in patients with anterior abdominal wall hernia – 33,16 ng/ml and comparison group – 73,46 ng/ml (p˂0.001). At the same time, the level of TIMP-1 was also statistically significantly higher in the comparison group than in patients with anterior abdominal wall hernias (p˂0,001). The median value of TIMP-3 – 35726,43 pg/ml in patients with anterior abdominal wall hernias and in patients with C5 stage CKD – 35313,70 pg/ml was statistically significantly higher in comparison with the control group – 17974,80 pg/ml (p˂0,001).

Conclusion. The obtained patterns may indicate pronounced inflammatory processes and connective tissue degradation in patients with chronic kidney disease undergoing dialysis replacement therapy.

About the Authors

V. V. Bereshchenko
Gomel State Medical University
Belarus

Valentin V. Bereshchenko, Candidate of Medical Sciences, Associate Professor, Head of the Department of Surgical Diseases No.3 

Gomel



L. A. Nikolaevich
Gomel State Medical University
Belarus

Anatoly N. Lyzikov, Doctor of Medical Sciences, Professor, Professor at the Department of Surgical Diseases No.1 with the course of cardiovascular surgery

Gomel



References

1. Wan J, Zhang G, Li X, Qiu X, Ouyang J, Dai J, Min S. Matrix Metalloproteinase 3: A Promoting and Destabilizing Factor in the Pathogenesis of Disease and Cell Differentiation. Front Physiol. 2021;12:663978. DOI: https://doi.org/10.3389/fphys.2021.663978

2. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562-573. DOI: https://doi.org/10.1016/j.cardiores.2005.12.002

3. Pinto AF, Terra RM, Guimarães JA, Kashiwagi M, Nagase H, Serrano SM, et al. Structural features of the reprolysin atrolysin C and tissue inhibitors of metalloproteinases (TIMPs) interaction. Biochem Biophys Res Commun. 2006;347(3):641-648. DOI: https://doi.org/10.1016/j.bbrc.2006.06.143

4. Van Hove I, Lemmens K, Van de Velde S, Verslegers M, Moons L. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem. 2012;123(2):203-216. DOI: https://doi.org/10.1111/j.1471-4159.2012.07900.x

5. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1-73. DOI: https://doi.org/10.1016/bs.pmbts.2017.02.005

6. Лайнен Г.Р. Матриксные металлополимеразы и фибринолитическая активность клеток. Биохимия. 2002;67(1):107- 115.

7. Kato T, Miyaki S, Ishitobi H, Nakamura Y, Nakasa T, Lotz MK, et al. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther. 2014;16(4):R163. DOI: https://doi.org/10.1186/ar4679

8. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 2000;1477(1-2):267-283. DOI: https://doi.org/10.1016/s0167-4838(99)00279-4

9. Gomis-Rüth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997;389(6646):77-81. DOI: https://doi.org/10.1038/37995

10. Nagase H, Suzuki K, Cawston TE, Brew K. Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). Biochem J. 1997;325 (Pt 1) (Pt 1):163-167. DOI: https://doi.org/10.1042/bj3250163

11. Huang W, Meng Q, Suzuki K, Nagase H, Brew K. Mutational study of the amino-terminal domain of human tissue inhibitor of metalloproteinases 1 (TIMP-1) locates an inhibitory region for matrix metalloproteinases. J Biol Chem. 1997;272(35):22086-22091. DOI: https://doi.org/10.1074/jbc.272.35.22086

12. Caterina NC, Windsor LJ, Yermovsky AE, Bodden MK, Taylor KB, Birkedal-Hansen H, et al. Replacement of conserved cysteines in human tissue inhibitor of metalloproteinases-1. J Biol Chem. 1997;272(51):32141-32149. DOI: https://doi.org/10.1074/jbc.272.51.32141

13. Välimäki J, Uusitalo H. Matrix metalloproteinases (MMP-1, MMP-2, MMP-3 and MMP-9, and TIMP-1, TIMP-2 and TIMP-3) and markers for vascularization in functioning and nonfunctioning bleb capsules of glaucoma drainage implants. Acta Ophthalmol. 2015;93(5):450-456. DOI: https://doi.org/10.1111/aos.12654

14. Tong Z, Liu Y, Chen B, Yan L, Hao D. Association between MMP3 and TIMP3 polymorphisms and risk of osteoarthritis. Oncotarget. 2017;8(48):83563-83569. DOI: https://doi.org/10.18632/oncotarget.18745

15. Srivastava P, Kapoor R, Mittal RD. Impact of MMP-3 and TIMP-3 gene polymorphisms on prostate cancer susceptibility in North Indian cohort. Gene. 2013;530(2):273-277. DOI: https://doi.org/10.1016/j.gene.2013.06.087

16. Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E, et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem. 2003;278(14):11888-11896. DOI: https://doi.org/10.1074/jbc.M209196200

17. Chin JR, Werb Z. Matrix metalloproteinases regulate morphogenesis, migration and remodeling of epithelium, tongue skeletal muscle and cartilage in the mandibular arch. Development. 1997;124(8):1519-1530. DOI: https://doi.org/10.1242/dev.124.8.1519

18. Yamada Y, Nakamura-Yamada S, Umemura-Kubota E, Baba S. Diagnostic Cytokines and Comparative Analysis Secreted from Exfoliated Deciduous Teeth, Dental Pulp, and Bone Marrow Derived Mesenchymal Stem Cells for Functional Cell-Based Therapy. Int J Mol Sci. 2019;20(23):5900. DOI: https://doi.org/10.3390/ijms20235900

19. Alexander CM, Selvarajan S, Mudgett J, Werb Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J Cell Biol. 2001;152(4):693-703. DOI: https://doi.org/10.1083/jcb.152.4.693

20. Huang JF, Du WX, Chen JJ. Elevated expression of matrix metalloproteinase-3 in human osteosarcoma and its association with tumor metastasis [published correction appears in J BUON. 2016 Mar-Apr;21(2):527]. J BUON. 2016;21(1):235-243.

21. Chen CL, Zhang L, Jiao YR, Zhou Y, Ge QF, Li PC, et al. miR-134 inhibits osteosarcoma cell invasion and metastasis through targeting MMP1 and MMP3 in vitro and in vivo. FEBS Lett. 2019;593(10):1089-1101. DOI: https://doi.org/10.1002/1873-3468.13387

22. Zheng J, Zhou Y, Li XJ, Hu JM. MiR-574-3p exerts as a tumor suppressor in ovarian cancer through inhibiting MMP3 expression. Eur Rev Med Pharmacol Sci. 2019;23(16):6839-6848. DOI: https://doi.org/10.26355/eurrev_201908_18723

23. Ma Y, Cang S, Li G, Su Y, Zhang H, Wang L, et al. Integrated analysis of transcriptome data revealed MMP3 and MMP13 as critical genes in anaplastic thyroid cancer progression [published correction appears in J Cell Physiol. 2024 Jun;239(6):e31260. doi:10.1002/jcp.31260]. J Cell Physiol. 2019;234(12):22260-22271. DOI: https://doi.org/10.1002/jcp.28793

24. De Groef L, Andries L, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinases in the mouse retina: a comparative study of expression patterns and MMP antibodies. BMC Ophthalmol. 2015;15:187. DOI: https://doi.org/10.1186/s12886-015-0176-y

25. Nishida K, Kuchiiwa S, Oiso S, Futagawa T, Masuda S, Takeda Y, et al. Up-regulation of matrix metalloproteinase-3 in the dorsal root ganglion of rats with paclitaxel-induced neuropathy. Cancer Sci. 2008;99(8):1618-1625. DOI: https://doi.org/10.1111/j.1349-7006.2008.00877.x

26. Andries L, Van Hove I, Moons L, De Groef L. Matrix Metalloproteinases During Axonal Regeneration, a Multifactorial Role from Start to Finish. Mol Neurobiol. 2017;54(3):2114-2125. DOI: https://doi.org/10.1007/s12035-016-9801-x

27. Huang XY, Han LY, Huang XD, Guan CH, Mao XL, Ye ZS. Impact of 5A/6A polymorphism of matrix metalloproteinase-3 on recurrent atherosclerotic ischemic stroke in Chinese. Int J Neurosci. 2016;126(10):936-941. DOI: https://doi.org/10.3109/00207454.2015.1088013

28. Ghaffarpour S, Ghazanfari T, Kabudanian Ardestani S, Pourfarzam S, Fallahi F, Shams J, et al. Correlation between MMP-9 and MMP-9/ TIMPs Complex with Pulmonary Function in Sulfur Mustard Exposed Civilians: Sardasht-Iran Cohort Study. Arch Iran Med. 2017;20(2):74-82.

29. Hu W, Ye Y, Yin Y, Sang P, Li L, Wang J, et al. Association of matrix metalloprotease 1, 3, and 12 polymorphisms with rheumatic heart disease in a Chinese Han population. BMC Med Genet. 2018;19(1):27. DOI: https://doi.org/10.1186/s12881-018-0538-4

30. Avdeeva AS, Aleksandrova EN, Karateev DE, Panasyuk EYu, Smirnov AV, Cherkasova MV, Nasonov EL. Relationship between matrix metalloproteinase-3 levels and articular destructive changes in early and extended rheumatoid arthritis Therapeutic archive. 2016;88(5):13-18. (in Russ.). DOI: https://doi.org/10.17116/terarkh201688513-18

31. Behrendt P, Preusse-Prange A, Klüter T, Haake M, Rolauffs B, Grodzinsky AJ, et al. IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthritis Cartilage. 2016;24(11):1981-1988. DOI: https://doi.org/10.1016/j.joca.2016.06.016

32. Belluzzi E, Olivotto E, Toso G, Cigolotti A, Pozzuoli A, Biz C, et al. Conditioned media from human osteoarthritic synovium induces inflammation in a synoviocyte cell line. Connect Tissue Res. 2019;60(2):136-145. DOI: https://doi.org/10.1080/03008207.2018.1470167

33. Bereshchenko VV, Lyzikov AN, Kondrachuk AN. Comparative description of the levels of matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1 in patients with 5D stage chronic kidney disease and in patients with anterior abdominal wall hernias. Health and Ecology Issues. 2021;18(4):41-47. (In Russ.). DOI: https://doi.org/10.51523/2708-6011.2021-18-3-5


Review

For citations:


Bereshchenko V.V., Nikolaevich L.A. Level of matrix metalloproteinase-3 and tissue inhibitor of matrix metalloproteinase-1 and -3 in patients with chronic kidney disease in stage C5 and in patients with anterior abdominal wall hernias. Health and Ecology Issues. 2024;21(4):60-67. (In Russ.) https://doi.org/10.51523/2708-6011.2024-21-4-07

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-0967 (Print)
ISSN 2708-6011 (Online)