Preview

Проблемы здоровья и экологии

Расширенный поиск

Виром в контексте здоровья и патологии дыхательной системы человека

https://doi.org/10.51523/2708-6011.2022-19-4-01

Аннотация

Организм человека, наряду с обширными микробными сообществами, именуемыми микробиомом, содержит различные вирусы, называющиеся в совокупности «виромом», притом численность таких микроорганизмов характеризуется большой сложностью и неоднородностью, а также превышает количество бактерий микробиома в 10 раз. Виром человека постоянно обновляется за счет быстрого эволюционирования и поступления вирусов из окружающей среды, а вирусное сообщество человеческого организма является индикатором состояния здоровья человека. Одним из компонентов вирома являются бактериофаги, разнообразие которых определяется в первую очередь видами, составляющими бактериальный компонент микробиома. Наряду с другими анатомическими структурами организма, дыхательные пути здоровых людей представлены огромным сообществом вирусов, также как и бактериальными сообществами, а анализ полного вирусного разнообразия дыхательных путей жизненно важен для понимания особенностей вирома человека. На сегодняшний день для анализа вирома и использования полученных результатов в клинической практике наиболее удобны подходы, основанные на секвенировании нового поколения, стоимость которого значительно снизилась в последнее время.

Об авторе

И. О. Стома
Гомельский государственный медицинский университет
Беларусь

Стома Игорь Олегович, д.м.н., доцент, ректор

г. Гомель



Список литературы

1. Virgin HW. The virome in mammalian physiology and disease. Cell. 2014;157:142-150.

2. Mokili JL, Rohwer F, Dutilh BE. Metagenomics and future perspectives in virus discovery. Curr Opin Virol. 2012;2:63-77. DOI: https://doi.org/10.1016/j.coviro.2011.12.004

3. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol. 2012;10:607-617. DOI: https://doi.org/10.1038/nrmicro2853

4. Seifarth W, Frank O, Zeilfelder U, et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol. 2005;79:341-352. DOI: https://doi.org/10.1128/JVI.79.1.341-352.2005

5. Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection. Cell 2009;138:30-50. DOI: https://doi.org/10.1016/j.cell.2009.06.036

6. Lim YW, Schmieder R, Haynes M, et al. Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities. J Cyst Fibros. 2013;12:154-164. DOI: https://doi.org/10.1016/j.jcf.2012.07.009

7. Wang Y, Zhu N, Li Y, et al. Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe 12 acute respiratory infection in China. Clin Microbiol Infect. 2016; 22:458.e1-458.e9. DOI: https://doi.org/10.1016/j.cmi.2016.01.006

8. Romero-Espinoza JA, Moreno-Valencia Y, Coronel-Tellez RH, et al. Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015. PLoS One. 2018;13: e0192878. DOI: https://doi.org/10.1371/journal.pone.0192878

9. Yang J, Yang F, Ren L, et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol 2011;49:3463-3469. DOI: https://doi.org/10.1128/JCM.00273-11

10. Lysholm F, Wetterbom A, Lindau C, et al. Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing. PLoS One. 2012;7:e30875. DOI: https://doi.org/10.1371/journal.pone.0030875

11. Willner D, Furlan M, Haynes M, et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One. 2009;4:e7370. DOI: https://doi.org/10.1371/journal.pone.0007370

12. Willner D, Haynes MR, Furlan M, et al. Case studies of the spatial heterogeneity of DNA viruses in the cystic fibrosis lung. Am J Respir Crit Care Med.2012;46:127-131.

13. Nishizawa T, Okamoto H, Konishi K, et al. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun. 1997;241:92-97. DOI: https://doi.org/10.1006/bbrc.1997.7765

14. Wylie KM, Mihindukulasuriya KA, Sodergren E, et al. Sequence analysis of the human virome in febrile and afebrile children. PLoS One. 2012;7: e27735. DOI: https://doi.org/10.1371/journal.pone.0027735

15. Khalifah AP, Hachem RR, Chakinala MM, et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med. 2004;170:181-187. DOI: https://doi.org/10.1164/rccm.200310-1359OC

16. Gottlieb J, Schulz TF, Welte T, et al. Communityacquired respiratory viral infections in lung transplant recipients: a single season cohort study. Transplantation. 2009;87:1530-1537. DOI: https://doi.org/10.1097/TP.0b013e3181a4857d

17. Segura-Wang M, Gorzer I, Jaksch P, et al. Temporal dynamics of the lung and plasma viromes in lung transplant recipients. PLoS One. 2018;13: e0200428. DOI: https://doi.org/10.1371/journal.pone.0200428

18. de Vlaminck I, Khush KK, Strehl C, et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell. 2013;155:1178-1187. DOI: https://doi.org/10.1016/j.cell.2013.10.034

19. Young JC, Chehoud C, Bittinger K, et al. Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am J Transplant. 2015;15:200-209. DOI: https://doi.org/10.1111/ajt.13031

20. Abbas AA, Diamond JM, Chehoud C, et al. The perioperative lung transplant virome: torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am J Transplant. 2017;17:1313-1324. DOI: https://doi.org/10.1111/ajt.14076

21. Blatter JA, Sweet SC, Conrad C, et al. Anellovirus loads are associated with outcomes in pediatric lung transplantation. Pediatr Transplant. 2018;22: e13069. DOI: https://doi.org/10.1111/petr.13069

22. Norman JM, Handley SA, Baldridge MT, et al. Diseasespecific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160: 447-460. DOI: https://doi.org/10.1016/j.cell.2015.01.002

23. Manrique P, Dills M, Young MJ. The human gut phage community and its implications for health and disease. Viruses.2017; 9: E141. DOI: https://doi.org/10.3390/v9060141

24. James CE, Davies EV, Fothergill JL, et al. Lytic activity by temperate phages of Pseudomonas aeruginosa in long-term cystic fibrosis chronic lung infections. ISME J. 2015;9:1391-1398. DOI: https://doi.org/10.1038/ismej.2014.223

25. Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45:649-659. DOI: https://doi.org/10.1128/AAC.45.3.649-659.2001

26. Summers WC. Bacteriophage research: early history. In: Kutter E, Sulakvelidze A, eds. Bacteriophages: Biology and Applications. Boca Raton, CRC Press, 2005; pp. 5-27.

27. Flores CO, Meyer JR, Valverde S, et al. Statistical structure of host–phage interactions. Proc Natl Acad Sci USA 2011;108:E288-E297. DOI: https://doi.org/10.1073/pnas.1101595108

28. Bartlett JG. Antibiotic-associated diarrhea. N Engl J Med. 2002;346:334-339. DOI: https://doi.org/10.1056/NEJMcp011603

29. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1:111-114. DOI: https://doi.org/10.4161/bact.1.2.14590

30. Kvachadze L, Balarjishvili N, Meskhi T, et al. Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol. 2011;4:643-650. DOI: https://doi.org/10.1111/j.1751-7915.2011.00259.x

31. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis. 2008;198:962-970. DOI: https://doi.org/10.1086/591708

32. Templeton KE, Scheltinga SA, van den Eeden WC, et al. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis. 2005;41:345-351. DOI: https://doi.org/10.1086/431588

33. Jennings LC, Anderson TP, Beynon KA, et al. Incidence and characteristics of viral community-acquired pneumonia in adults. Thorax. 2008; 63:42-48. DOI: https://doi.org/10.1136/thx.2006.075077

34. Mallia P, Footitt J, Sotero R, et al. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186:1117-1124. DOI: https://doi.org/10.1164/rccm.201205-0806OC

35. Papi A, Bellettato CM, Braccioni F, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173:1114-1121. DOI: https://doi.org/10.1164/rccm.200506-859OC

36. George SN, Garcha DS, Mackay AJ, et al. Human rhinovirus infection during naturally occurring COPD exacerbations. Eur Respir J. 2014;44:87-96. DOI: https://doi.org/10.1183/09031936.00223113

37. Petersen NT, Høiby N, Mordhorst CH, et al. Respiratory infections in cystic fibrosis patients caused by virus, chlamydia and mycoplasma – possible synergism with Pseudomonas aeruginosa. Acta Paediatr Scand. 1981;70:623-628. DOI: https://doi.org/10.1111/j.1651-2227.1981.tb05757.x.

38. de Steenhuijsen Piters WA, Heinonen S, Hasrat R, et al. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am J Respir Crit Care Med. 2016;194:1104-1115. DOI: https://doi.org/10.1164/rccm.201602-0220OC

39. James KM, Gebretsadik T, Escobar GJ, et al. Risk of childhood asthma following infant bronchiolitis during the respiratory syncytial virus season. J Allergy Clin Immunol. 2013;132:227-229. DOI: https://doi.org/10.1016/j.jaci.2013.01.009

40. Sigurs N, Bjarnason R, Sigurbergsson F, et al. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am J Respir Crit Care Med. 2000;161:1501-1507. DOI: https://doi.org/10.1164/ajrccm.161.5.9906076

41. Kusel MM, Kebadze T, Johnston SL, et al. Febrile respiratory illnesses in infancy and atopy are risk factors for persistent asthma and wheeze. Eur Respir J. 2012;39:876-882. DOI: https://doi.org/10.1183/09031936.00193310

42. Jackson DJ, Gangnon RE, Evans MD, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med. 2008;178:667-672. DOI: https://doi.org/10.1164/rccm.200802-309OC

43. Wu P, Dupont WD, Griffin MR, et al. Evidence of a causal role of winter virus infection during infancy in early childhood asthma. Am J Respir Crit Care Med. 2008;178:1123-1129. DOI: https://doi.org/10.1164/rccm.200804-579OC

44. Yang J, Yang F, Ren L, et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol 2011;49:3463-3469. DOI: https://doi.org/10.1128/JCM.00273-11

45. Graf EH, Simmon KE, Tardif KD, et al. Unbiased detection of respiratory viruses by use of RNA sequencing-based metagenomics: a systematic comparison to a commercial PCR panel. J Clin Microbiol. 2016;54:1000-1007. DOI: https://doi.org/10.1128/JCM.03060-15

46. Thorburn F, Bennett S, Modha S, et al. The use of next generation sequencing in the diagnosis and typing of respiratory infections. J Clin Virol. 2015; 69:96-100. DOI: https://doi.org/10.1016/j.jcv.2015.06.082

47. Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 2015;7:99. DOI: https://doi.org/10.1186/s13073-015-0220-9

48. Greninger AL, Zerr DM, Qin X, et al. Rapid metagenomic next-generation sequencing during an investigation of hospitalacquired human parainfluenza virus 3 infections. J Clin Microbiol. 2017;55:177-182. DOI: https://doi.org/10.1128/JCM.01881-1

49. Seemungal T, Harper-Owen R, Bhowmik A, et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1618-1623. DOI: https://doi.org/10.1164/ajrccm.164.9.2105011

50. Bafadhel M, McKenna S, Terry S, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011;184:662-671. DOI: https://doi.org/10.1164/rccm.201104-0597OC

51. Wilkinson TMA, Aris E, Bourne S, et al. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax. 2017;72:919-927.

52. Biancardi E, Fennell M, Rawlinson W, et al. Viruses are frequently present as the infecting agent in acute exacerbations of chronic obstructive pulmonary disease in patients presenting to hospital. Intern Med J. 2016;46:1160-1165. DOI: https://doi.org/10.1111/imj.13213

53. Tan WC, Xiang X, Qiu D, et al. Epidemiology of respiratory viruses in patients hospitalized with near-fatal asthma, acute exacerbations of asthma, or chronic obstructive pulmonary disease. Am J Med. 2003;115:272-277. DOI: https://doi.org/10.1016/s0002-9343(03)00353-х

54. Molyneaux PL, Mallia P, Cox MJ, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188:1224-1231. DOI: https://doi.org/10.1164/rccm.201302-0341OC

55. Wark PA, Tooze M, Cheese L, et al. Viral infections trigger exacerbations of cystic fibrosis in adults and children. Eur Respir J 2012;40:510-512. DOI: https://doi.org/10.1183/09031936.00202311

56. Wat D, Gelder C, Hibbitts S, et al. The role of respiratory viruses in cystic fibrosis. J Cyst Fibros. 2008;7:320-328. DOI: https://doi.org/10.1016/j.jcf.2007.12.002

57. Collinson J, Nicholson KG, Cancio E, et al. Effects of upper respiratory tract infections in patients with cystic fibrosis. Thorax. 1996;51:1115-1122. DOI: https://doi.org/10.1136/thx.51.11.1115

58. de Almeida MB, Zerbinati RM, Tateno AF, et al. Rhinovirus C and respiratory exacerbations in children with cystic fibrosis. Emerging Infect Dis 2010;16:996-999. DOI: https://doi.org/10.3201/eid1606.100063

59. Flight WG, Bright-Thomas RJ, Tilston P, et al. Incidence and clinical impact of respiratory viruses in adults with cystic fibrosis. Thorax. 2014;69:247-253. DOI: https://doi.org/10.1136/thoraxjnl-2013-204000

60. Chaban B, Albert A, Links MG, et al. Characterization of the upper respiratory tract microbiomes of patients with pandemic H1N1 influenza. PLoS One. 2013;8:e69559. DOI: https://doi.org/10.1371/journal.pone.0069559

61. Greninger AL, Chen EC, Sittler T, et al. A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America. PLoS One. 2010;5:e13381. DOI: https://doi.org/10.1371/journal.pone.0013381

62. Leung RK, Zhou JW, Guan W, et al. Modulation of potential respiratory pathogens by pH1N1 viral infection. Clin Microbiol Infect. 2013;19:930-935. DOI: https://doi.org/10.1111/1469-0691.12054

63. Lu HF, Li A, Zhang T, et al. Disordered oropharyngeal microbial communities in H7N9 patients with or without secondary bacterial lung infection. Emerg Microbes Infect. 2017;6:e112. DOI: https://doi.org/10.1038/emi.2017.101

64. Yildiz S, Mazel-Sanchez B, Kandasamy M, et al. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome. 2018;6:9. DOI: https://doi.org/10.1186/s40168-017-0386-z

65. Qin N, Zheng B, Yao J, et al. Influence of H7N9 virus infection and associated treatment on human gut microbiota. Sci Rep. 2015;5:14771. DOI: https://doi.org/10.1038/srep14771


Рецензия

Для цитирования:


Стома И.О. Виром в контексте здоровья и патологии дыхательной системы человека. Проблемы здоровья и экологии. 2022;19(4):7-13. https://doi.org/10.51523/2708-6011.2022-19-4-01

For citation:


Stoma I.O. Virome in the context of health and pathology of the human respiratory system. Health and Ecology Issues. 2022;19(4):7-13. (In Russ.) https://doi.org/10.51523/2708-6011.2022-19-4-01

Просмотров: 408


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-0967 (Print)
ISSN 2708-6011 (Online)