Rationale for the use of photocatalysis for natural and drinking water purification from pollutants of biological origin
https://doi.org/10.51523/2708-6011.2021-18-4-19
Abstract
Objective. To evaluate the effectiveness of photocatalytic methods of oxidation of organic substances for the preparation of drinking water. To show the expediency of the use of the described method for the design of wastewater treatment facilities.
Materials and methods. The oxidation degrees of 58 organic substances of various hazard classes were studied. The sampling frame was based on two characteristics: origin (biological and artificial) and the oxidation state stated in different sources.
Results. A high efficiency of photocatalysis for the destruction of organic substances in wastewater from various industries has been shown: the degrees of oxidation range from 70 to 100 %.
Conclusion. Photocatalysis can be used to design wastewater treatment facilities with a view to reducing the probability of biological pollution of natural waters intended for drinking water production.
About the Authors
D. O. TsymbalBelarus
Denis O. Tsymbal, Lecturer at the Department of Biological Chemistry
Gomel
M. E. Mazanik
Belarus
Maria E. Mazanik, Senior Lecturer at the Department of Biological Chemistry
Gomel
References
1. The measurement and monitoring of water supply, sanitation and hygiene (WASH) affordability: a missing element of monitoring of Sustainable Development Goal (SDG) Targets 6.1 and 6.2. New York: United Nations Children’s Fund (UNICEF) and the World Health Organization, 2021. [date of access 2021 April 15]. Available from: Available from: https://washdata.org/sites/default/files/2021-05/unicef-who-2021-affordability-of-wash-services-full.pdf
2. World Health Organization (WHO). Animal Waste, Water Quality and Human Health. Edited by Al Dufour, Jamie Bartram, Robert Bos and Victor Gannon. [date of access 2021 April 15]. Available from: from: https://apps.who.int/iris/handle/10665/75700
3. WHO OECD ILSI/HESI International workshop on risk assessment of combined exposures to multiple chemicals. Series on testing and assessment. 2017;40. [date of access 2021 April 15]. Available from: https://apps.who.int/iris/bitstream/handle/10665/255543/9789241512374-eng.pdf
4. Progress on household drinking water, sanitation and hygiene 2000-2020: Five years into the SDGs. Geneva: World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF), 2021. [date of access 2021 April 15]. Available from: https://washdata.org/sites/default/files/2021-06/jmp-2021-wash-households-LAUNCH-VERSION.pdf
5. WHO (2006). Guidelines for Drinking-water Quality, 1st Addendum to the 3rd ed., Volume 1: Recommendations, World Health Organization, Geneva. [date of access 2021 April 15]. Available from: https://apps.who.int/iris/bitstream/handle/10665/43285/9789241546768_eng.pdf
6. Lur’e JuJu. Analytical chemistry of industrial wastewater. M.: Сhemistry; 1984. Р. 73-78.
7. Galkovsky SV, Samosyuk AS. Use of water resources in the Republic of Belarus. Economy and society. 2016;11(30):355-358. [date of access 2021 April 15]. Available from: https://rep.polessu.by/bitstream/123456789/21407/1/Ispol%27zovanie_vodnykh_resursov.pdf
8. Freudenhammer H, Bahnemenn D, Bousselmi L, Geissen S-U, Ghrabi A, Saleh F, Siemon U, Vogelpohl A. Detoxification and recycling of wastewater by solar-catalytic treatment. Water Sci Technol. 1997;35(4):149-156. DOI: https://doi.org/10.1016/S0273-1223(97)00020-6
9. Valeeva AA, Kozlova EA, Dorosheva IB. Synthesis and certification of photocatalysts based on titanium dioxide nanotubes for purifying water and air from harmful organic impurities. Fundamental research and applied development of the processes of processing and disposal of technogenic formations “Technogen-2019”. 2019;196-198. [date of access 2021 April 15]. Available from: https://www.elibrary.ru/item.asp?id=38545017
10. Konstantinova EA, Kytin VG, Marikuca AV, Trusov GV. TiO 2 based photocatalysts operating under visible light illumination. Collection of scientific papers of the VI Congress of Biophysicists of Russia. 2019;109. [date of access 2021 April 15]. Available from: https://www.elibrary.ru/item.asp?id=41173550
11. Ageeva VA, Golubenko EV, Romashhenko IA, Shubina EN. Efficient catalytic systems for converting alcohols to aldehydes. Chemistry: achievements and prospects: Collection of scientific articles based on the materials of the V All-Russian scientific-practical conference of students and young scientists. 2020;91-94. [date of access 2021 April 15]. Available from: https://www.elibrary.ru/item.asp?id=42904182
12. Soboleva NM, Nosonovich AA, Goncharuk VV. Heterogeneous photocatalysis in water treatment processes. Chemistry and technology of water. 2007;29(2):125-159. [date of access 2021 April 15]. Available from: http://dspace.nbuv.gov.ua/handle/123456789/5503
13. Ilisz I, Foglein KJ, Dombi А. The photochemical behavior of hydrogen peroxide in near UV-irradiated aqueous TiO 2 suspensions. Mol Catal A Chem. 1998;135:55-61. DOI: https://doi.org/10.1016/S1381-1169(97)00296-3
14. Abdel-Magd A, Abdel-Wahab, Abd El-Aal M Gaber. TiO 2 -photocatalytic oxidation of selected heterocyclic sulfur compounds. Journal of Photochemistry and Photobiology A Chemistry. 1998;114(3):213-218. DOI: https://doi.org/10.1016/S1010-6030(98)00204-4
15. Matthews RW, Abdullah M, Low GK-C. Photocatalytic oxidation for total organic carbon analysis. Anal Chim Acta. 1990;233:171-179. DOI: https://doi.org/10.1016/S0003-2670(00)83476-5
16. Ai SY, Li JQ, Yang Y, Gao MN, Pan ZS. Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO 2 –K 2 Cr 2 O 7 system. Anal Chim Acta. 2004;509:237-241. DOI: https://doi.org/10.1016/j.aca.2003.09.056
17. Ku Y, Jung I-L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 2001;35(1):135-142. DOI: https://doi.org/10.1016/S0043-1354(00)00098-1
18. Balconi ML, Borgarello M, Ferraroli R. Chemical oxygen demand determination in well and river waters by flow-injection analysis using a microwave oven during the oxidation step. Anal Chim Acta. 1992;261:295-299. DOI: http://dspace.nbuv.gov.ua/handle/123456789/5503
19. Kim YC, Sasaki S, Yano K, Ikebukuro K, Hashimoto K, Karube I. Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis. Anal Chim Acta. 2001;432:59-66. DOI: https://doi.org/10.1016/S0003-2670(00)01145-4
20. Kelina SJu, Dedkov JuM. Possibilities of using the UV – nano-TiO 2 – K 2 Cr 2 O 7 system for COD determination. Journal of Analytical Chemistry. 2016;71(12):1270-1278. DOI: https://doi.org/10.7868/S0044450216120069
21. Degussa Technical Bulletin Pigments, Highly Dispersed Metallic Oxides Produced by the AEROSIL® Process. 1990;56:11.
22. Hoffmann MR, Martin ST, W Choi, Bahnemann DW. Environmental Applications of Semiconductor Photocatalysis. Chem Rev. 1995;95(1):69-96. DOI: https://doi.org/10.1021/cr00033a004
23. Kapinus EI, Viktorova TI, Haljavka TA. Mechanism and kinetics of photocatalytic degradation of DDT on titanium oxide catalysts. Ukrainian chemical journal. 2009;75(12):102-105. [date of access 2021 April 15]. Available from: http://dspace.nbuv.gov.ua/handle/123456789/82717
24. Song Y, Wang С, Li J. Modification of porphyrin/ dipyridine metal complexes on the surface of TiO 2 nanotubes with enhanced photocatalytic activity for photoreduction of CO 2 into methanol. Journal of Materials Research. 2018;33(17):2612-2620. DOI: https://doi.org/10.1557/jmr.2018.294
25. Beinik I, Bruix A, Adamsen KC. Water Dissociation and Hydroxyl Ordering on Anatase TiO 2 (001)- (1×4). Physical Review Letters. 2018;121(20):206003. DOI: https://doi.org/10.1103/PhysRevLett.121.206003
26. Mengjie W, Kun L. Application of and research on TiO 2 photocatalysis technology. E3S Web of Conferences: 2, Changchun. 2020;165:05001. DOI: https://doi.org/10.1051/e3sconf/202016505001
27. Mahmood А, Militky J, Pechociakova M, Wiener J. TiO 2 based photo-catalysis for virus disinfection. Journal of Fiber Bioengineering and Informatics. 2020;14(1):53-66. DOI: https://doi.org/10.3993/JFBIM00364
28. Gopinath KP, Madhav NV, Krishnan A, et al. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. Journal of Environmental Management. 2020;270:110906. DOI: https://doi.org/10.1016/j.jenvman.2020.110906
29. Li J, Li L, Zheng L, Xian Y, Jin L. Determination of chemical oxygen demand values by a photocatalytic oxidation method using nano-TiO 2 film on quartz. Talanta. 2006;68(3):765-770. DOI: https://doi.org/10.1016/j.talanta.2005.06.012
30. Zhu L, Chen Y, Wu Y, Li X, Tang H. A surface-fluorinated-TiO 2 –KMnO 4 photocatalytic system for determination of chemical oxygen demand. Anal Chim Acta. 2006;571:242-247. DOI: https://doi.org/10.1016/j.aca.2006.04.073
31. Park H, Choi W. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Phys Chem. B. 2004;108(13):4086-4093. DOI: https://doi.org/10.1002/adma.200306673
32. Mrowetz M, Selli E. Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO 2 and ZnO water suspensions. Phys Chem Chem. Phys. 2005;7(6):1100-1102. DOI: https://doi.org/10.1016/j.jphotochem.2005.09.009
33. Yu JC, Yu J, Ho W, Jiang ZT, Zhang LZ. Effects of F - Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO 2 Powders. Chem Mater. 2002;14(9):3808-3816. DOI: https://doi.org/10.1021/cm020027c
34. Fu HX, Lu GX, Li SB. Adsorption and photo-induced reduction of Cr(VI) ion in Cr(VI)-4CP (4-chlorophenol) aqueous system in the presence of TiO 2 as photocatalyst. J Photochem Photobiol A Chem. 1998;114:81-88. DOI: https://doi.org/10.1016/S1010-6030(98)00205-6
35. Malato S, Blanco J, Richter C, Braun B. Maldonado M.I. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl Catal B Environ. 1998;17(4):347-356. DOI: https://doi.org/10.1016/S0926-3373(98)00019-8
36. Colon G, Hidalgo MC, Navio JA. Photocatalytic deactivation of commercial TiO 2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid. J Photochem Photobiol A Chem. 2001;138(1):79-85. DOI: https://doi.org/10.1016/S1010-6030(00)00372-5
37. Schrank SG, Jose HJ, Moreira RFPM. Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO 2 slurry reactor. J Photochem Photobiol A Chem. 2002;147(1):71-76. DOI: https://doi.org/10.1016/S1010-6030(01)00626-8
38. Kelina SY, Tsymbal DO, Dedkov YM. New methods for the determination of chemical oxygen demand. Methods and Objects of Chemical Analysis. 2017;12(1):17-23. DOI: https://doi.org/10.17721/moca.2017.17-23
39. Kelina SJu, Tsymbal DO, Dedkov JuM. New possibilities of catalyzing the oxidation process in determining the chemical oxygen consumption (review). Factory laboratory. Diagnostics of materials. 2012;78(9):8-12. [date of access 2021 April 15]. Available from: https://www.elibrary.ru/item.asp?id=17957962
40. Kelina SJu, Tsymbal DO, Trohimenko GG, Suhareva AS. Monitoring of surface waters of the Nikolaev area on indicators of chemical consumption of oxygen in the conditions of heterogeneous photocatalysis. Scientific Bulletin of NLTU of Ukraine. 2015;25(6):147-153. [date of access 2021 April 15]. Available from: http://eir.nuos.edu.ua/xmlui/handle/123456789/2943
41. Hamidi H, Niazmand MA, Asrar K, Okolnikova GE. Purification of water contaminated with petroleum hydrocarbons by using the solar Photocatalytic method. International Research Journal. 2021;6-1(108):172-177. DOI: https://doi.org/10.23670/IRJ.2021.108.6.027
Review
For citations:
Tsymbal D.O., Mazanik M.E. Rationale for the use of photocatalysis for natural and drinking water purification from pollutants of biological origin. Health and Ecology Issues. 2021;18(4):143-152. (In Russ.) https://doi.org/10.51523/2708-6011.2021-18-4-19