Nanostructural organization of bone mineral matrix
https://doi.org/10.51523/2708-6011.2006-3-2-21
Abstract
The inorganic phase of trabecular surface of human vertebra was investigated. The size and three-dimensional shape of native protein-free mineralites were observed with atomic force microscopy. AFM-images reveal two morphological types: mineral plates and needle-shaped crystals, associated with collagen fibrils.
References
1. Денисов-Никольский Ю.И., Жилкин Б.А., Докторов А.А., Матвейчук И.В. Ультраструктурная организация минерального компонента пластинчатой костной ткани у людей зрелого и старческого возраста // Морфология. - 2002. - Т. 122. - № 5. - С. 79-83.
2. Fratzl P., Groschner M., Vogl G., Plenk H., Eschberger J., Fratzl-Zelman N. et al. Mineral crystals in calcified tissues - a сomparative study by SAXS.// J. Bone Miner Res. - 1992. - № 7. - P. 329-334.
3. Hassenkam T., Fantner G., Cutroni J.A., Weaver C., Hansma P.K. High-resolution AFM imaging of intact and fractured trabecular bone. // Bone. - 2004. - V. 35. - № 1. - P. 4-10.
4. Jaschouz D., Paris O., Roschger P., Hwang H.S., Fratzl P. Pole figure analysis of mineral nanoparticle orientation in individual trabecular of human vertebral bone. // J. Appl. Crystallogr. - 2003. - V. 36. - P. 494-498.
5. Kim H.M., Rey C., Glimcher M.J. Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature. // J. Bone Miner Res.-1995. - № 10. - P. 1589-1601.
6. Kuangshin T., Hang J.Q., Ortis C. Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. // J. Materials science: Materials in medicine. - 2005. - V. 16 - № 8. - P. 1-12.
7. Landis W.J., Song M.J., Leith A., McEwen L. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.// J. Struct. Biol. - 1993. - № 110. - P. 39-54.
8. Landis W.J., Hodgens K.J. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. // J. Struct. Вiol. - 1996. - V. 117. - С. 24-35.
9. Lees S., Prostak K.S., Ingle V.K., Kjoller K. The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. // Caicif. Tissue Int. - 1994. - V. 55. - P. 180-189.
10. Rubin M.A., Jasiuk L., Taylor J, Rubin J., Ganey T., Apkarian R.P. ТЕМ analysis of the nanostructure of normal and osteoporotic human trabecular bone. // Воnе. - 2003. - V. 33. - № 3. - Р. 270-282.
11. Su X., Sun K., Cui F.Z. and Landis W.J. Organization of apatite crystals in human woven bone. // Bone. - 2003. - V. 32. - № 2. - P. 150-162.
12. Tong W., Glimcher M.J., Katz J.L., Kuhn L., Eppell S.J. Size and shape of mineralites in young bovine bone measured by atomic force microscopy. // Calcjf. Tissue Int. - 2003. - V. 75. - P. 592-598.
13. Weiner S.T., Traub W. and Wagner D. Lamellar bone: structure-function relations. // J. Struct. Biol. - 1999. - V. 126. - № 3. - P. 241-255.
Review
For citations:
Kuznetsova T.G. Nanostructural organization of bone mineral matrix. Health and Ecology Issues. 2006;(2):107-112. (In Russ.) https://doi.org/10.51523/2708-6011.2006-3-2-21