Preview

Health and Ecology Issues

Advanced search

Experience of Klebsiella pneumoniae genome sequencing using the short read method on the Illumina platform

https://doi.org/10.51523/2708-6011.2023-20-1-19

Abstract

Objective. To review the main stages of Klebsiella pneumoniae genome sequencing using the Illumina short-read method and describe the peculiarities of sample library preparation and analysis of the obtained data.

Materials and methods. Deoxyribonucleic acid (DNA) for high-throughput sequencing was isolated from Klebsiella pneumoniae cultures. Sample preparation was performed according to the manufacturer’s instructions for the Nextera XT DNA Library Prep kit. Sequencing was performed on an Illumina MiSeq platform using a 2x151 cartridge. Genome assembly to the contigs was performed using the SPAdes Genome Assembler application on the Illumina BaseSpace Sequence Hub service and a set of programs in a Linux environment. The quality of genome assembly was assessed using the QUAST service.

Results. Genome sequencing of K. pneumoniae culture samples was performed, followed by an evaluation of the quality of the launch, assembly of the genome, and determination of its main parameters.

Conclusion. The main steps of K. pneumoniae genome sequencing have been considered using the short-read method on the Illumina platform. The main parameters for assessing the quality of sample preparation, launch and genome assembly are described.

About the Authors

A. S. Shaforost
Gomel State Medical University
Belarus

Alexander S. Shaforost, Senior Researcher at the Research Laboratory 

Gomel 



A. A. Ziatskov
Gomel State Medical University
Belarus

Alexey A. Ziatskov, Senior Researcher at the Research Laboratory

Gomel 



E. V. Voropaev
Gomel State Medical University
Belarus

Evgenii V. Voropaev, Candidate of Medical Sciences, Associate Professor, Vice-Rector for Scientific Work

Gomel 



O. V. Osipkina
Gomel State Medical University
Belarus

Olga V. Osipkina, Head of the Research Laboratory

Gomel 



A. V. Voropaeva
Republican scientific and practical center for radiation medicine and human ecology
Belarus

Alla V. Voropaeva, Candidate of Biological Sciences, Associate Professor, Physician at Clinical Laboratory Diagnostics

Gomel 



N. A. Bonda
Gomel Regional Center for Hygiene, Epidemiology and Public Health
Belarus

Nadezhda A. Bonda, Head of the Microbiology Laboratory

Gomel 



I. O. Stoma
Gomel State Medical University
Belarus

Igor O. Stoma, Doctor of Medical Sciences, Associate Professor, Rector 

Gomel 



References

1. Gupta N, Verma VK. Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. In: Arora PK, editor. Microbial Technology for the Welfare of Society, Singapore: Springer; 2019. p. 313-341. DOI: https://doi.org/10.1007/978-981-13-8844-6_15

2. Pervez MT, Hasnain MJU, Abbas SH, Moustafa MF, Aslam N, Shah SSM. A Comprehensive Review of Performance of Next-Generation Sequencing Platforms. Biomed Res Int. 2022 Sep 2022;29:345780. DOI: https://doi.org/10.1155/2022/3457806

3. AmpliSeq for Illumina Community Panels. [дата обращения 2023 январь 24]. Режим доступа: https://emea.illumina.com/products/by-brand/ampliseq/community-panels.html

4. Goodwin, S., McPherson, J. & McCombie, W. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333-335. DOI: https://doi.org/10.1038/nrg.2016.49

5. Quality Scores for Next-Generation Sequencing. [дата обращения 2023 январь 24]. Режим доступа: https://www.illu-mina.com/documents/products/technotes/technote_Q-Scores.pdf

6. Cluster density guidelines for Illumina sequencing platforms using non-patterned flow cells. [дата обращения 2023 январь 23]. Режим доступа: https://emea.support.illumina.com/bulletins/2016/10/cluster-density-guidelines-for-illumina-sequencing-platforms-html

7. MiSeq System Denature and Dilute Libraries Guide (15039740). [дата обращения 2022 декабрь 15]. Режим доступа: https://support.illumina.com/content/dam/illumina-support/documents/documentation/system_documentation/miseq/miseq-denature-dilute-libraries-guide-15039740-10.pdf

8. How much PhiX spike-in is recommended when sequencing low diversity libraries on Illumina platforms? [дата обращения 2022 сентябрь 21]. Режим доступа: https://emea.support.illumina.com/bulletins/2017/02/how-much-phix-spike-in-is-recommended-when-sequencing-low-divers.html

9. Babraham Bioinformatics FastQC A Quality Control tool for High Throughput Sequence Data. [дата обращения 2022 октябрь 5]. Режим доступа: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

10. SPAdes-Genome-Assembler Details BaseSpace Sequence Hub. [дата обращения 2023 январь 16]. Режим доступа: https://basespace.illumina.com/apps/3047044/SPAdes-Genome-Assembler?preferredversion

11. Bioinformatics portal Galaxy | Europe. [дата обращения 2023 январь 24]. Режим доступа: https://usegalaxy.eu/root?tool_id=toolshed.g2.bx.psu.edu%2Frepos%2Fnml%2Fspades%2Fspades%2F3.15.4%2Bgalaxy1

12. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114-2120. DOI: https://doi.org/10.1093/bioinformatics/btu170

13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology. 2012;19:455-477. DOI: https://doi.org/10.1089/cmb.2012.0021

14. Releases ablab/spades. GitHub [дата обращения 2023 январь 16]. Режим доступа: https://github.com/ablab/spades/releases

15. Sikolenko MA, Sergeev RS, Valentovich LN. A method for assessing the completeness of nucleotide data for genomic sequences based on the calculation of the proportions of contiguous contig assemblies. In: Proceedings of the II Intern. scientific-practical. conf. «Computer technologies and data analysis (CTDA’2020)» (Minsk, April 23-24, 2020) Minsk: BSU; 2019. p. 162-166. [Date of access 2023 january 18]. Mode of access: https://elib.bsu.by/handle/123456789/248660 (in Russ.).

16. QUAST Quality Assessment Tool for Genome Assemblies [Date of access 2023 january 23]. Mode of access: https://cab.cc.spbu.ru/quast/

17. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020;75:3491–5000 [Date of access 2023 january 09]. Mode of access: https://doi.org/10.1093/jac/dkaa345

18. ResFinder 4.1 Identifcation of acquired antibiotic resistance genes [Date of access 2023 january 10]. Mode of access: https://cge.food.dtu.dk/services/ResFinder/

19. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013;57:3348-3357. DOI: https://doi.org/10.1128/AAC.00419-13

20. The Comprehensive Antibiotic Resistance Database . [Date of access 2023 january 09]. Mode of access: https://card.mcmaster.ca/analyze/rgi

21. MLST 2.0 Multi Locus Sequence Typing [Date of access 2023 january 09]. Mode of access: https://cge.food.dtu.dk/services/MLST/


Review

For citations:


Shaforost A.S., Ziatskov A.A., Voropaev E.V., Osipkina O.V., Voropaeva A.V., Bonda N.A., Stoma I.O. Experience of Klebsiella pneumoniae genome sequencing using the short read method on the Illumina platform. Health and Ecology Issues. 2023;20(1):152-159. (In Russ.) https://doi.org/10.51523/2708-6011.2023-20-1-19

Views: 296


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-0967 (Print)
ISSN 2708-6011 (Online)