Preview

Health and Ecology Issues

Advanced search

Molecular genetic markers of resistance and virulence of invasive Klebsiella pneumoniae strains according to whole genome sequencing data

https://doi.org/10.51523/2708-6011.2023-20-1-01

Abstract

Objective. To evaluate genetic mechanisms of antibiotic resistance and virulence of invasive strains of Klebsiella pneumoniae isolated from inpatients using whole genome sequencing.

Materials and methods. For two carbapenem-resistant multiple-antibiotic-resistant invasive strains of K.pneumoniae, as well as two carbapenem-sensitive invasive strains of K.pneumoniae, sequencing was performed using the MiSeq genomic sequencer (Illumina). Genomic sequences were assembled and annotated. Sequence type determination, search for plasmids and virulence factors, antibiotic resistance genes, and efflux mechanisms were performed.

Results. K.pneumoniae strains belonged to sequence types ST395, ST101, ST111, and ST512 s and had a hypermucoid phenotype. The iutA aerobactin genes were detected in both sensitive and carbapenem-resistant strains. Virulence genes fimH, fyuA, and irp2 were detected in one strain isolated from blood. Carbapenemase genes (blaKPC, blaNDM) were detected in two strains. Aminoglycosides and fluoroquinolones resistance genes were detected in 3 of 4 strains. All strains showed the presence of different systems of active antibiotic elimination from the microbial cell.

Conclusion. The possibility of identifying hypervirulent strains of K.pneumoniae using a complex phenotypic test along with hvKp genotyping is shown. The results of full-genome sequencing reflect significant resistance of hypervirulent K.pneumoniae strains isolated from blood to most antibiotics, including β-lactams, aminoglycosides, fluoroquinolones, phosphomycin, chloramphenicol and polymyxins.

About the Authors

N. A. Bonda
Gomel Regional Center for Hygiene, Epidemiology and Public Health
Belarus

Nadezhda A. Bonda, Head of Microbiological Laboratory 

Gomel 



I. О. Stoma
Gomel State Medical University
Belarus

Igor O. Stoma, Doctor of Medical Sciences, Associate Professor, Rector 

Gomel 



O. V. Osipkina
Gomel State Medical University
Belarus

Olga V. Osipkina, Head of Research Laboratory 

Gomel 



A. A. Ziatskov
Gomel State Medical University
Belarus

Aliaksei A. Ziatskov, Researcher at the Research Laboratory 

Gomel 



A. S. Shaforost
Gomel State Medical University
Belarus

 

Alexander S. Shaforost, Senior Researcher at the Research Laboratory 

Gomel 



E. V. Karpova
Gomel State Medical University
Belarus

Elena V. Karpova, Assistant Lecturer at the Department of Microbiology, Virology and Immunology

Gomel 



D. V. Tapalski
Gomel State Medical University
Belarus

Dmitry V. Tapalski, Doctor of Medical Sciences, Associate Professor, Head of the Department of Microbiology, Virology and Immunology

Gomel 



References

1. Togawa A, Toh H, Onozawa K, Yoshimura M, Tokushige C, et al. Influence of the bacterial phenotypes on the clinical manifestations in Klebsiella pneumoniae bacteremia patients: a retrospective cohort study. J Infect Chemother. 2015 Jul;21(7):531-537. DOI: https://doi.org/10.1016/j.jiac.2015.04.004

2. Liu C, Guo J. Hypervirulent Klebsiella pneumonia (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann clin microbiol. 2019 Jan 21;18(1):4. DOI: https://doi.org/10.1186/s12941-018-0302-9

3. Rossi B, Gasperini ML, Leflon-Guibout V, Gioanni A, de Lastours V, Rossi G, et al. Hypervirulent Klebsiella pneumonia in cryptogenic liver abscesses, Paris, France. Emerg Infect Dis. 2018 Feb;24(2):221-229. DOI: https://doi.org/10.3201/eid2402.170957

4. Parrott AM, Shi J, Aaron J, Green DA, et al. Detection of multiple hypervirulent Klebsiella pneumoniae strains in a New York City hospital through screening of virulence genes. Clin. Microbiol. Infect. 2021 Apr;27(4):583-589. DOI: https://doi.org/10.1016/j.cmi.2020.05.012

5. Dong N, Yang X, Zhang R, Chan EW-C, Chen S. Tracking microevolution events among ST11 carbapenemase-producing hypervirulent Klebsiella pneumoniae outbreak strains. Emerg Microbes Infect. 2018 Aug 12;7(1):146. DOI: https://doi.org/10.1038/s41426-018-0146-6

6. Sanikhani R, Moeinirad M, Shahcheraghi F, Lari A, Fereshteh S, Sepehr A, et al. Molecular epidemiology of hypervirulent Klebsiella pneumoniae: a systematic review and meta-analysis. Iran J Microbiol. 2021 Jun;13(3):257-265. DOI: https://doi.org/10.18502/ijm.v13i3.6384

7. Liao W, De Wang L, Li D, Du F-L, Long D, Liu Y, et al. High Prevalence of 16s rRNA methylase genes among carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates in a Chinese Tertiary Hospital. Microb Drug Resist. 2021 Jan;27(1):44-52. DOI: https://doi.org/10.1089/mdr.2019.0482

8. RR, Judd LM, Froumine R, Tokolyi A, Gorrie CL, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019 Apr 15;15(4):e1008114. DOI: https://doi.org/10.1371/journal.pgen.1008114

9. Feng Y, Lu Y, Yao Z, Zong Z. Carbapenem-resistant hypervirulent Klebsiella pneumonia of sequence type 36. Antimicrob Agents Chemother. 2018 Jun 26;62(7):e02644-17. DOI: https://doi.org/10.1128/AAC.02644-17

10. Yan J, Wang M, Zheng P, Tsai L, Wu J. Associations of the major international high-risk resistant clones and virulent clones with specific ompK36 allele groups in Klebsiella pneumonia in Taiwan. N Microbes New Infect. 2015 Feb;5:1-4. DOI: https://doi.org/10.1016/j.nmni.2015.01.002

11. Hamzaoui Z, Ocampo-Sosa A, Martinez MF, Landolsi S, Ferjani S, Maamar E, et al. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blaampC genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae. Int J Antimicrob Agents. 2018 Dec;52(6):898-905. DOI: https://doi.org/10.1016/j.ijantimicag.2018.03.020

12. Li G, Shi J, Zhao Y, Xie Y, Tang Y, Jiang X, et al. Identification of hypervirulent Klebsiella pneumonia isolates using the string test in combination with Galleria mellonella infectivity. Eur J Clin Microbiol Infect Dis. 2020 Sep;39(9):1673-1679. DOI: https://doi.org/10.1007/s10096-020-03890-z

13. Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumonia from classical K. pneumoniae. J Clin Microbiol. 2018 Aug 27;56(9):e00776-18. DOI: https://doi.org/10.1128/JCM.00776-18

14. Hao M, Shi X, Lv J, Niu S, Cheng S, Du H, et al. In vitro activity of apramycin against carbapenem-resistant and hypervirulent Klebsiella pneumoniae isolates. Front. Microbiol. 2020 Mar 13;11:425. DOI: https://doi.org/10.3389/fmicb.2020.00425

15. Shankar C, Jacob JJ, Vasudevan K, Biswas R, Manesh A, et al. Emergence of multidrug resistant hypervirulent ST23 Klebsiella pneumoniae: multidrug resistant plasmid acquisition drives evolution. Front cell Infect Microbiol. 2020 Nov 20;10:575289. DOI: https://doi.org/10.3389/fcimb.2020.575289

16. Gu D, Dong N, Zheng Z, Lin D, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect. Dis. 2018,18:37-46. DOI: https://doi.org/10.1016/S1473-3099(17)30489-9

17. Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell, RA, et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis. 2017 Jul 15;65(2):208-215. DOI: https://doi.org/10.1093/cid/cix270

18. Sun QL, Gu D, Wang Q, Hu Y, Shu L, Hu J, et al. Dynamic colonization of isolates in gastrointestinal tract of intensive care patients. Front Microbiol. 2019 Feb 11;10:230. DOI: https://doi.org/10.3389/fmicb.2019.00230

19. Barantsevich EP. Production of Carbapenemases in Klebsiella pneumoniae Isolated in Saint-Petersburg. Clin Microb Antichemother. 2016;18(3):196-199. (In Russ.).

20. Lam MM, Wyres KL, Judd LM, Wick RR, Jenney A, Brisse S, et al. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. Genome Med. 2018 Oct 29;10(1):77. DOI: https://doi.org/10.1186/s13073-018-0587-5

21. Tapalski DV, Petrenev DR. Prevalence of carbapenemase-producing Klebsiella pneumoniae isolates in Belarus and their competitive ability Clin Microb Antichemother. 2017;19(2):139-144. (In Russ.).

22. Tapalski DV, Osipov VA, Yevseyenko EO, et al. (2017) Metallo-beta-lactamases and carbapenemases among extreme antibiotic-resistant Klebsiella pneumoniae: occurrence in Belarus. Zdravoohranenie. 2017;(3):40-47. (In Russ.).


Review

For citations:


Bonda N.A., Stoma I.О., Osipkina O.V., Ziatskov A.A., Shaforost A.S., Karpova E.V., Tapalski D.V. Molecular genetic markers of resistance and virulence of invasive Klebsiella pneumoniae strains according to whole genome sequencing data. Health and Ecology Issues. 2023;20(1):7-15. (In Russ.) https://doi.org/10.51523/2708-6011.2023-20-1-01

Views: 541


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-0967 (Print)
ISSN 2708-6011 (Online)