Effect of X-ray radiation on the nanomechanical properties of the erythrocyte surface of rats on a high-cholesterol diet
https://doi.org/10.51523/2708-6011.2021-18-3-13
Abstract
Objective. To reveal changes in the structural and nanomechanical properties of the erythrocyte surface caused by the action of X-ray radiation in vitro on the whole blood of rats on a high-cholesterol diet using the method of atomic-force microscopy.
Materials and methods. The blood of male Wistar rats being on a high-cholesterol diet for two months was exposed to X-ray radiation (320 kV) at doses of 1 and 100 Gy. The structural, elastic and adhesive properties of the surface of isolated and glutaraldehyde-fxed erythrocytes at the nanoscale were studied using the atomic- force microscope BioScope Resolve in PeakForce QNM mode in air.
Results. The study has identifed an increase in the stiffness of the erythrocyte surface at a dose of 1 Gy and its decrease to almost control values at a dose of 100 Gy, which was accompanied by an increase in the size of the average cell of the erythrocyte membrane skeleton. At the same time, no signifcant changes in the morphology, adhesive properties and roughness of the relief of erythrocytes have been found.
Conclusion. The obtained data indicate that X-ray radiation (1–100 Gy) induces the dose-depending reorganization of the structure and changes in the stiffness of the erythrocyte surface layer at the nanoscale without changing the cell morphology for rats on a high-cholesterol diet.
Keywords
About the Authors
I. A. ChelnokovaBelarus
Irina A. Chelnokova, junior researcher, graduate student at the Laboratory of Experimental Biological Models
Gomel
N. M. Shkliarava
Belarus
Nastassia M. Shkliarava, junior researcher at the Laboratory of Experimental Biological Models
Gomel
A. U. Tsukanava
Belarus
Alena U. Tsukanava, junior researcher at the Laboratory of Experimental Biological Models
Gomel
I. A. Nikitina
Russian Federation
Irina A. Nikitina, PhD (Biol), Head of the Department of Biological Chemistry
Gomel
M. N. Starodubtseva
Russian Federation
Maria N. Starodubtseva, DBiolSc, Associate Professor, Professor at the Department of Medical and Biological Physics; Chief Researcher at the Laboratory of Experimental Biological Models
Gomel
References
1. Sugihara K. Self-assembled lipid structures as model systems for studying electrical and mechanical properties of cell membranes. Chimia International Journal for Chemistry. 2016;70(11):805-809. DOI: https://doi.org/10.2533/chimia.2016.805
2. Shi Y, Cai M, Zhou L, Wang H. The structure and function of cell membranes studied by atomic force microscopy. Semin Cell Dev Biol. 2018;73:31-44. DOI: https://doi.org/10.1016/j.semcdb.2017.07.012
3. Jani VP, Lucas A, Jani VP, Munoz C, Williams AT, Ortiz D et al. Numerical model for the determination of erythrocyte mechanical properties and wall shear stress in vivo from intravital microscopy. Front Physiol. 2020;10:1562. DOI: https://doi.org/10.3389/fphys.2019.01562
4. Shi Y, Cai M, Zhou L, Wang H. Measurement of mechanical properties of naked cell membranes using atomic force microscope puncture test. Talanta. 2020 Apr;210:120637. DOI: https://doi.org/10.1016/j.talanta.2019.120637
5. Steinkühler J, Sezgin E, Urbančič I, Eggeling C, Dimova R. Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. Commun Biol. 2019;2:337. DOI: https://doi.org/10.1038/s42003-019-0583-3
6. Molugu TR, Brown MF. Cholesterol effects on the physical properties of lipid membranes viewed by solid-state nmr spectroscopy. Adv Exp Med Biol. 2019;1115:99-133. DOI: https://doi.org/10.1007/978-3-030-04278-35
7. Wang L, Xu F, Zhang XJ, Jin RM, Li X. Effect of high-fat diet on cholesterol metabolism in rats and its association with Na+/K+-ATPase/Src/pERK signaling pathway. J Huazhong Univ Sci Technolog Med Sci. 2015;35(4):490-494. DOI: https://doi.org/10.1007/s11596-015-1458-6
8. Široká M, Franco C, Guľašová Z, et al. Nuclear factor-kB and nitric oxide synthases in red blood cells: good or bad in obesity? A preliminary study. Eur J Histochem. 2020;64(1):3081. DOI: https://doi.org/10.4081/ejh.2020.3081
9. Kim OY, Lee SM, An WS. Impact of blood or erythrocyte membrane fatty acids for disease risk prediction: focusing on cardiovascular disease and chronic kidney disease. Nutrients. 2018;10(10):1454. DOI: https://doi.org/10.3390/nu10101454
10. Schillers H. Measuring the elastic properties of living cells. Methods Mol Biol. 2019;1886:291-313. DOI: https://doi.org/10.1007/978-1-4939-8894-517
11. Yip R, Mohandas N, Clark MR, Jain S, Shohet SB, Dallman PR Red cell membrane stiffness in iron defciency. Blood. 1983;62(1):99-106. DOI: https://doi.org/10.1182/blood.V62.1.99.99
12. Fortier N, Snyder LM, Garver F, Kiefer C, McKenney J, Mohandas N. The relationship between in vivo generated hemoglobin skeletal protein complex and increased red cell membrane rigidity. Blood. 1988;71(5):1427-1431.
13. Gwoździński K. Ionizing radiation-induced structural modifcation of human red blood cells. Radiat Environ Biophys. 1991;30(1):45-52. DOI: https://doi.org/10.1007/BF01595573
14. Mahmoud SS, El-Sakhawy E, Abdel-Fatah ES, Kelany AM, Rizk RM. Effects of acute low doses of gamma-radiation on erythrocytes membrane. Radiat Environ Biophys. 2011;50(1):189-198. DOI: https://doi.org/10.1007/s00411-010-0333-x
15. Spyratou E, Dilvoi M, Patatoukas G, Platoni K, Makropoulou M, Efstathopoulos EP Probing the effects of ionizing radiation on young’s modulus of human erythrocytes cytoskeleton using atomic force microscopy. J Med Phys. 2019;44(2):113-117. DOI: https://doi.org/10.4103/jmp.JMP_95_18
16. Heydarian A, Khorramymehr S, Vasaghi-Gharamaleki B. Short-term effects of X-ray on viscoelastic properties of epithelial cells. Proc Inst Mech Eng H. 2019;233(5):535-543. DOI: https://doi.org/10.1177/0954411919837563
17. Effects of ionizing radiation on blood and blood components: A survey. Iaea-tecdoc-934. 1997;28(13):42. [date of access 2021 July 8]. Available from: https://wwwpub.iaea.org/MTCD/Publications/PDF/te_934_prn.pdf
18. Liu SC, Derick LH, Palek J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol. 1987;104(3):527-536. DOI: https://doi.org/10.1083/jcb.104.3.527
19. Lux SE 4th. Anatomy of the red cell membrane skeleton: unanswered questions. Blood. 2016;127(2):187-199. DOI: https://doi.org/10.1182/blood-2014-12-512772
20. Nans A, Mohandas N, Stokes DL. Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography. Biophys J. 2011;101(10):2341-2350. DOI: https://doi.org/10.1016/j.bpj.2011.09.050
21. Bitler A, Dover RS, Shai Y. Fractal properties of cell surface structures: A view from AFM. Semin. Cell Dev. Biol. 2018;73:64-70. DOI: https://doi.org/10.1016/j.semcdb.2017.07.034
22. Messmann, R., Gannon, S., Sarnaik, S., Johnson, R.M. Mechanical properties of sickle cell membranes. Blood. 1990;75(8):1711-1717.
23. Heydarian A, Khorramymehr S, Vasaghi-Gharamaleki B. Short-term effects of X-ray on viscoelastic properties of epithelial cells. Proc Inst Mech Eng H. 2019;233(5):535-543. DOI: https://doi.org/10.1177/0954411919837563
24. Antonio, P.D., Lasalvia, M., Perna, G., Capozzi, V. Scale-independent roughness value of cell membranes studied by means of AFM technique. Biochim Biophys Acta. 2012;1818(12):3141-3148. DOI: https://doi.org/10.1016/j.bbamem.2012.08.001
25. Girasole M, Pompeo G, Cricenti A, et al. Roughness of the plasma membrane as an independent morphological parameter to study RBCs: a quantitative atomic force microscopy investigation. Biochim Biophys Acta. 2007;1768(5):1268-1276. DOI: https://doi.org/10.1016/j.bbamem.2007.01.014
26. Walpurgis K, Kohler M, Thomas A, et al. Effects of gamma irradiation and 15 days of subsequent ex vivo storage on the cytosolic red blood cell proteome analyzed by 2D-DIGE and Orbitrap MS. Proteomics Clin Appl. 2013;7(7-8):561-570. DOI: https://doi.org/10.1002/prca.201300009
27. López-Canizales AM, Angulo-Molina A, Garibay-Escobar A, et al. Nanoscale Changes on RBC Membrane Induced by Storage and Ionizing Radiation: A Mini-Review. Front Physiol. 2021;12:669455. DOI: https://doi.org/10.3389/fphys.2021.669455
28. Zhang B, Liu B, Zhang H, Wang J. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation. PLoS One. 2014;9(11):e112624. DOI: https://doi.org/10.1371/journal.pone.0112624
29. Blanc L, Salomao M, Guo X, An X, Gratzer W, Mohandas N. Control of erythrocyte membrane-skeletal cohesion by the spectrin-membrane linkage. Biochemistry. 2010;49(21):4516-4523. DOI: https://doi.org/10.1021/bi1003684
30. Madder RD, VanOosterhout S, Mulder A, Ten Brock T, Clarey AT, Parker JL, Jacoby ME. Patient body mass index and physician radiation dose during coronary angiography. Circ Cardiovasc Interv. 2019;12(1):e006823. DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.118.006823
Review
For citations:
Chelnokova I.A., Shkliarava N.M., Tsukanava A.U., Nikitina I.A., Starodubtseva M.N. Effect of X-ray radiation on the nanomechanical properties of the erythrocyte surface of rats on a high-cholesterol diet. Health and Ecology Issues. 2021;18(3):105-115. (In Russ.) https://doi.org/10.51523/2708-6011.2021-18-3-13