Correlation of the magnetic resonance imaging apparent diffusion coefficient with the count of cellularity in the histological material in different morphological types of lymphomas
https://doi.org/10.51523/2708-6011.2021-18-2-15
Abstract
Objective: to evaluate the correlation between the values of the magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) and the count of cellularity in histological material and to establish a relationship between the cellular structure and the prognostic properties of MRI with diffusion-weighted imaging (MRIDWI) in various morphological types of lymphomas.
Materials and methods. 101 patients with morphologically verified lymphoma (Hodgkin lymphoma (HL) — 52 patients, non-Hodgkin lymphomas (NHL) — 49) underwent whole body MRI-DWI before treatment and ADC measurement in the target lesion. An excisional biopsy of the lesion was performed from the same anatomical area and the count of cellularity in the histological material was determined.
Results. In HL, aggressive NHL and diffuse large B-cell lymphoma (DLBCL), ADC is statistically significantly higher, and cellularity is lower than in indolent NHL and cells of the mantle zone of NHL. We have found an inverse correlation between the values of ADC and cellularity in aggressive NHL (ρ = -0.47, p = 0.005) and DLBCL (ρ = -0.48, p = 0.006).
Conclusion. ADC values depend on the cellular structure of the lymphomas. The correlation of ADC and cellularity values of various morphological types of lymphomas allows explaining the prognostic properties of ADC.
About the Authors
S. A. KharuzhykBelarus
Siarhei A. Kharuzhyk, PhD (Med), Associate Professor, radiologist at the Department of Radiology
Minsk
O. R. Aniskevich
Belarus
Oleg R. Aniskevich, Assistant Lecturer at the Department of Pathological Anatomy
Minsk
E. A. Zhavrid
Belarus
Edward A. Zhavrid, DMedSc, Professor, Chief researcher at the Laboratory of Photodynamic Therapy and Hyperthermia with a Group of Chemotherapy
Minsk
References
1. Kharuzhyk SA, Zhavrid EA, Dziuban AV, et al. Whole body diffusion-weighted magnetic resonance imaging and positron emission tomography/computed tomography for staging of lymphomas. Vestnik Rentgenologii i Radiologii. 2019;(6):321–334. (in Russ.). https://doi.org/10.20862/0042-4676-2019-100-6-321-334
2. Kharuzhyk SA, Zhavrid EA. Prospective study of prognostic effectiveness of diffusion-weighted magnetic resonance imaging in Hodgkin lymphoma. Oncological Journal. 2020;14(2-3):52–67. (in Russ.)
3. Kharuzhyk SA, Zhavrid EA. Prospective study of prognostic effectiveness of diffusion-weighted magnetic resonance imaging in non-Hodgkin lymphomas. Eurasian Oncological Journal. 2020;8(3):220–338. (in Russ.)
4. Kharuzhyk SA, Zhavrid EA, Dziuban AV, et al. Comparison of the diagnostic effectiveness of whole body magnetic resonance imaging with diffusion weighted imaging and positron emission tomography/computed tomography in determining tumor response in lymphoma after the end of chemotherapy: Minsk scale and Deauville scale. Diagnostic Radiology and Radiotherapy. 2020;11(1):78–92. (in Russ.). https://doi.org/10.22328/2079-5343-2020-11-1-78-92
5. Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009 Feb;11(2):102–125. https://doi.org/10.1593/ neo.81328
6. Kwee TC, Ludwig I, Uiterwaal CS, et al. ADC measurements in the evaluation of lymph nodes in patients with non-Hodgkin lymphoma: feasibility study. MAGMA. 2011;24(1):1–8. https://doi.org/10.1007/s10334-010-0226-7
7. Abdel Razek AA, Elkammary S, Elmorsy AS, et al. Characterization of mediastinal lymphadenopathy with diffusion-weighted imaging. Magn Reson Imaging. 2011;29(2):167–172. https://doi.org/10.1016/j.mri.2010.08.002
8. Gümüştaş S, Inan N, Akansel G, et al. Differentiation of lymphoma versus sarcoidosis in the setting of mediastinal-hilar lymphadenopathy: assessment with diffusion-weighted MR imaging. Sarcoidosis Vasc Diffuse Lung Dis. 2013;30(1):52–59.
9. Sudarkina AV, Dergilev AP, Kozlov VV, et al. Differential diagnosis of mediastinal lymphadenopathy in lymphoma and sarcoidosis using diffusion-weighted magnetic resonance imaging. Diagnostic Radiology and Radiotherapy. 2020;11(3):56–62. (in Russ.). https://doi.org/10.22328/2079-5343-2020-11-3-56-62
10. Sumi M, Ichikawa Y, Nakamura T. Diagnostic ability of apparent diffusion coefficients for lymphomas and carcinomas in the pharynx. Eur Radiol. 2007;17(10):2631– 2637. https://doi.org/10.1007/s00330-007-0588-z
11. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (Eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. IARC: Lyon, 2017.
12. Shah BD, Martin P, Sotomayor EM. Mantle cell lymphoma: a clinically heterogeneous disease in need of tailored approaches. Cancer Control. 2012;19(3):227–235. https://doi.org/10.1177/107327481201900307
13. Wu X, Sikiö M, Pertovaara H, et al. Differentiation of Diffuse Large B-cell Lymphoma From Follicular Lymphoma Using Texture Analysis on Conventional MR Images at 3.0 Tesla. Acad Radiol. 2016;23(6):696–703. https://doi.org/10.1016/j.acra.2016.01.012
14. Meyer HJ, Pazaitis N, Surov A. ADC histogram analysis of muscle lymphoma-correlation with histopathology in a rare entity. Br J Radiol. 2018;91(1090):20180291. https://doi.org/10.1259/
15. Lisitsa YV, Yatskou MM, Apanasovich VV, Apanasovich TV. An automatic algorithm for the nuclei border segmentation of cancer cells in three-channel fluorescent images. Journal of Applied Spectroscopy. 2015;82(4):598–607. (in Russ.)
16. Nishiofuku H, Matsushima S, Inaba Y, et al. Cellular density evaluation for malignant lymphoma using equivalent cross-relaxation rate imaging - initial experience. Korean J Radiol. 2010;11(3):327–332. https://doi.org/10.3348/kjr.2010.11.3.327
17. Wu X, Pertovaara H, Dastidar P, et al. ADC measurements in diffuse large B-cell lymphoma and follicular lymphoma: a DWI and cellularity study. Eur J Radiol. 2013;82(4):e158-64. https://doi.org/10.1016/j.ejrad.2012.11.021
18. Kharuzhyk SA. Diffusion-weighted magnetic resonance imaging of normal lymph nodes. Eurasian Oncological Journal. 2020;8(1):30–39. (in Russ.)
19. Khoruzhik SA, Sachivko NV, Zhavrid EA. Vliyanie ryada klinicheskikh i tekhnicheskikh faktorov na znachenie izmeryaemogo koeffitsienta diffuzii pri limfome do nachala lecheniya. V: Aktual’nye problemy diagnostiki i lecheniya zlokachestvennykh novoobrazovaniy: materialy Respublikanskoy nauchno-prakticheskoy konferentsii, posvyashchen. 40-letiyu kafedry onkologii BGMU Minsk: BGMU; 2014. p. 104–106. (in Russ.).
20. Bollineni VR, Kramer G, Liu Y, et al. A literature review of the association between diffusion-weighted MRI derived apparent diffusion coefficient and tumour aggressiveness in pelvic cancer. Cancer Treat Rev. 2015;41(6):496–502. https://doi.org/10.1016/j.ctrv.2015.03.010
21. Wu X, Pertovaara H, Korkola P, et al. Correlations between functional imaging markers derived from PET/CT and diffusion-weighted MRI in diffuse large B-cell lymphoma and follicular lymphoma. PLoS One. 2014;9(1):e84999. https://doi.org/10.1371/journal.pone.0084999
22. Sun M, Cheng J, Zhang Y, et al. Application of DWIBS in malignant lymphoma: correlation between ADC values and Ki-67 index. Eur Radiol. 2018;28(4):1701–1708. https://doi.org/10.1007/s00330-017-5135-ybjr.20180291
23. Gallamini A, Fiore F, Sorasio R, Meignan M. Interim positron emission tomography scan in Hodgkin lymphoma: definitions, interpretation rules, and clinical validation. Leuk Lymphoma. 2009;50(11):1761–1764. https://doi.org/10.3109/10428190903308072
Review
For citations:
Kharuzhyk S.A., Aniskevich O.R., Zhavrid E.A. Correlation of the magnetic resonance imaging apparent diffusion coefficient with the count of cellularity in the histological material in different morphological types of lymphomas. Health and Ecology Issues. 2021;18(2):102-112. (In Russ.) https://doi.org/10.51523/2708-6011.2021-18-2-15