- 19. Полиморфизм генов ренин-ангиотензиновой системы у больныз артериальной гипертензией и ишемической болезнью сердца, осложненной хронической сердечной недостаточностью / Н. П. Дорофеева [и др.] // Артериальная гипертензия. 2005. Т. 11, № 4. С. 235–239.
- 20. Особенности распределения полиморфных маркеров генов ренин-ангиотензин-альдостероновой системы, связь с гипертрофией левого желудочка у больных эссенциальной гипертонией узбекской национальности / Γ . А. Хамидуллаева [и др.] // Кардиология . 2007. Т. 47, № 4. С. 54–58.
- 21. Распределение частот генотипов и аллелей в генах II, V свертывания крови и метилентетрагидрофолат редуктазы среди населения г. Томска / О. Ф. Сибирева [и др.] // Медицинская генетика. 2008. № 5. С. 35–37.
- 22. Предикторы внутрисердечного тромбоза у больных с мерцательной аритмией, факторы гемостаза, маркеры воспалений и генетические факторы / И. В. Зотова [и др.] // Кардиология. 2007. Т. 46, № 11. С. 46–54.

- 23. *Пузырев, В. П.* Состояние и перспективы исследований в генетической кардиологии / В. П. Пузырев // Вестник РАМН. 2000. № 7. С. 28–32.
- 24. Vargas Alarcón, G. Genetic polymorphisms in cardiovascular diseases. The experience in the National Institute of Cardiology «Ignacio Chávez» / G. Vargas Alarcón // Arch Cardiol Mex. 2007. Vol. 77, \mathbb{N} 4. P. 88–93.
- 25. *Баранов, В. С.* Программа «Геном человека» и научная основа профилактической медицины / В. С. Баранов // Вестник РАМН. 2000. № 1. С. 27–36.
- 26. О необходимости популяционных исследований и учета этнической компоненты при изучении сложных генетически обусловленных патологий / И. В. Голденкова-Павлова [и др.] // Генетика. 2006. Т. 42, № 8. С. 1137–1142.
- 27. Генетико-эпидемиологические и социально-экономические аспекты наследственной этноспецифической патологии в Якутии / Н. Р. Максимова [и др.] // Медицинская генетика. 2008. № 10. С. 35–43.

Поступила 25.04.2009

УДК 616.12-008.3-053.2:616.839-021.5]:613.163

СОСТОЯНИЕ СЕРДЕЧНО-СОСУДИСТОЙ И ВЕГЕТАТИВНОЙ СИСТЕМЫ ПРИ ИЗМЕНЕНИИ КЛИМАТО-ПОГОДНЫХ УСЛОВИЙ

А. С. Рудницкая

Гомельский государственный медицинский университет

Установлена зависимость показателей синусового сердечного ритма от климато-погодных условий. Исходный вегетативный тонус и вегетативная реактивность у многих детей не соответствует норме.

<u>Ключевые слова</u>: сердечный ритм у детей, исходный вегетативный тонус, вегетативная реактивность, климат, параметры атмосферы.

STATE OF CARDIOVASCULAR AND VEGETATIVE NERVOUS SYSTEM IN CHANGE OF CLIMATIC-WEATHER CONDITIONS

A. S. Rudnitskaya

Gomel State Medical University

Work of heart depends on climatic-weather conditions. The initial vegetative tone and vegetative reactance at many children.

Key words: rhythm at heart children, vegetative tone, vegetative reactance, climate, atmosphere conditions.

Введение

Проблема изменения климатических условий и их влияние на организм человека, проживающего в крупных промышленных городах, изучена недостаточно. Физиологические реакции у здоровых и больных людей связаны с отдельными климатическими параметрами. Каждый из метеоэлементов может усиливать или ослаблять действие другого фактора. Высокая влажность усиливает неблагоприятное действие высоких и низких температур, сильный ветер в сочетании с высокой влажностью и низкой температурой в одном случае способствует перегреванию, в другом — переохлаждению.

Проведенные рядом авторов исследования связи параметров атмосферы и показателей состояния здоровья человека свидетельствуют о наличии обострений сердечно-сосудистых заболеваний в определенные сезоны и зависимо-

сти внутрибольничной летальности сердечно-сосудистого генеза от типа погоды, периода солнечной активности [1, 2].

В крупных городах, где имеются климатические особенности, создаваемые спецификой промышленных зон, отмечается рост количества метеозависимого населения, что реально отражает снижение адаптивных возможностей человека.

По результатам исследований ряда авторов, в которых изучалось влияние природных сверхнизкочастотных колебаний атмосферного давления на способность человека к активной концентрации внимания, установлено, что нерегулярные хаотические колебания атмосферного давления затрудняли концентрацию внимания и дезорганизовывали перцептивную обработку информации, вызывая психофизиологическое напряжение, снижая устойчивость нервной системы к информационной нагрузке [3].

По многолетним (1993–2003 гг.) наблюдениям за природными факторами самого холодного месяца в году в г. Гомеле установлены следующие изменения: температура воздуха января медленно, но верно повышалась; достоверно увеличивалось атмосферное давление в январе; достоверно уменьшалась степень возмущенности магнитного поля; установлена тесная прямая связь между количеством осадков и температурой воздуха января; тесная прямая связь между температурой и влажностью воздуха; тесная обратная связь между продолжительностью солнечного сияния и от-

носительной влажностью воздуха января, а также увеличение междусуточной изменчивости метеоэлементов, перепады и контраст [4].

Например, в городе Гомеле изменение температуры воздуха января с 1928 по 2003 гг. свидетельствовало о медленном ее повышении (рисунок 1), где кривая *а* представляет средние значения температуры воздуха января по годам, кривая *в* отражает отсутствие цикличности протекающих изменений показателя температуры атмосферного воздуха за исследуемый период, прямая с отражает тенденцию к увеличению данного показателя за 75 лет.

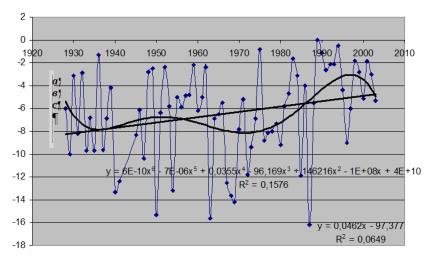


Рисунок 1 — Среднее значение температуры воздуха (°C) января 1928-2003 гг.

За последние 30 лет (1973–2003 гг.) связь между температурой воздуха января и временем измерения (рисунок 2) стала немного теснее: R = 0,365 (наличие данной связи с вероятностью 95 % не является следствием случайности), отмечалось наличие резких перепадов температуры воздуха в течение суток, частая смена температуры атмосферного воздуха со знаком «+» на температуру со знаком «-».

При построении регрессионной модели для показателя «атмосферное давление» за период 1993–2003 гг., коэффициент значимости

составил 61 %. Существует прямая линейная зависимость между показателем атмосферного давления и годом его измерения, что свидетельствует об увеличении значений данного фактора с каждым годом (рисунок 3).

В г. Гомеле установлена высокая влажность воздуха в зимний сезон. Сочетание высокой влажности воздуха с повышенным атмосферным давлением и с резким снижением температуры может приводить к изменению состояния регуляторных процессов в организме человека, метеопатии [5].

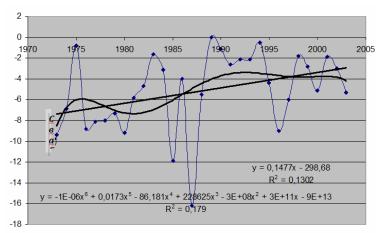


Рисунок 2 — Среднее значение температуры воздуха (°C) января 1973–2003 гг.

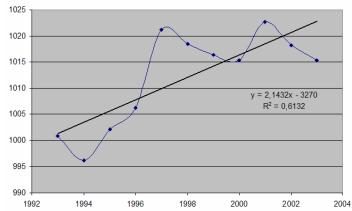


Рисунок 3 — Атмосферное давление (мбар) января 1993-2003 гг.

Крупное промышленное производство в городах становится источником влияния на климат города и приводит к изменению метеорологических факторов, влияние которых на организм человека рассматривается недостаточно.

Цель исследования

Изучить влияние климато-погодных условий на синусовый сердечный ритм у здоровых детей, исходный вегетативный тонус и вегетативную реактивность.

Материал и метод исследования

Всего обследовано 910 детей школьного возраста (8–13 лет) в период с 1993–2002 гг. Методом кардиоинтервалографии с применением клиноортостатической пробы (М. Б. Кубергер с соавт., 1985 г.) оценивался синусовый сердечный ритм у здоровых детей, а также исходный вегетативный тонус (ИВТ) и вегетативная реактивность (ВР) [6]. Анализ кардиоинтервалограммы производится в отведении, где хорошо выражены зубцы Р и R, чаще это II стандартное отведение.

Показатели кардиоинтервалограмм детей, обследованных в разные годы, по датам проведения исследования сопоставлялись с показателями климато-погодных условий на момент обследования.

Для оценки наблюдений климатических показателей применялись методы анализа временных рядов.

Результаты исследований обработаны статистически с помощью программы SPSS с применением методов анализа временных рядов, использованием регрессионной и полиноминальной модели, корреляционного анализа.

Результаты и обсуждение

Результаты исследования климатических и геофизических параметров в январе (1993—2002 гг.) указывали на наличие изменений, не характерных для отдельных показателей метеоэлементов в зимний сезон [4].

Метод кардиоинтервалографии, обладая высоким уровнем чувствительности, установил связь показателей наиболее часто встречающегося интервала R — R в положении лежа и положении стоя (соответственно Mo1 и Mo2) синусового сердечного ритма детей с метеорологическими элементами, возмущенностью магнитного поля. При построении корреляционной матрицы по данным обследования 910 школьников в месяце (1993—2002 гг.) отмечена зависимость синусового сердечного ритма (Mo1 и Mo2) от шести климатических параметров, где значение коэффициента корреляции Пирсона с вероятностью 95% не является следствием случайности (таблица 1).

Таблица 1 — Корреляционная матрица средних значений сердечного ритма группы детей и показателей климатических параметров

Показатели	Осадки	Ср. темп	Мин. темп.	Макс. темп.	Влажность	Ветер макс.	Солн.	Атм.	К-индекс
сердечного ритма	в границах	воздуха	воздуха в	возд. в гра-	в границах	в границах	сияние	давлен в	в границах
	изменения	в границах	в границах	ницах из-	изменения	изменения	в границах	границах	изменения
	от тіп до тах	изменения	изменения	менения	от тіп до тах	от тіп до	изменения	изменения	от min до
	0,37-1,4 мм/сут	от тіп до тах	от тіп до тах	от min до max	от 79,7 %	тах от	от тіп до	от тіп до	тах от 1,6
	(среднее	от -9,0	от -11,9	от 6°С до	до 92,8 %	7 м/с	тах от 0,6	тах от 996	до 2,5
	за месяц)	до -0,36°С	до -3,1°С	0°С (среднее	(среднее	до 9,6 м/с	до 2,1	до 1023 мбар	(среднее
		(среднее	(среднее	за месяц)	за месяц)	(среднее	(среднее	(среднее	за месяц)
		за месяц)	за месяц)			за месяц)	за месяц)	за месяц)	
Mo1 (c)	0,37	0,68	0,57	0,57	0,76	0,64	-0,9*	0,29	0,53
Мо1 (с) дев.	-0,27	0,05	0,02	-0,8	0,51	0,92*	-0,7	0,64	-0,26
Мо1 (с) мал.	0,53	0,55	0,74	0,58	0,89*	0,51	-0,62	0,16	0,42
Mo2 (c)	-0,94	-0,79	-0,98*	-0,87	-0,98*	0,33	0,73	0,44	-0,56
Мо2 (с) дев.	-0,95	-0,98*	-0,9	-0,98*	-0,68	0,8	0,97	0,86	-0,84
Мо2 (с) мал.	-0,74	-0,89	-0,63	-0,82	-0,31	0,91	0,92	0,96*	-0,99*
ЧСС (уд/мин)	0,66	0,25	0,46	0,44	0,01	-0,73	0,44	-0,57	0,32
ЧСС (уд/мин) дев.	0,69	0,29	0,47	0,47	-0,01	-0,76	0,44	-0,64	0,40
ЧСС (уд/мин) мал.	0,66	0,24	0,50	0,44	0,10	-0,63	0,39	-0,46	0,23

С вероятностью 95 % значение коэффициента Пирсона не является следствием случайности.

У мальчиков и девочек не установлена связь между показателями частоты сердечных сокращений (ЧСС) и климатическими параметрами, вероятность значимо меньше (от 40 до 80 %). Для всех возрастных групп детей средние показатели Мо1, Мо2 составляют значения ниже нормы (таблица 2).

Дети на момент обследования были здоровы и соответственно составили группу условно здоровых детей. Показатели кардиоинтервало-

грамм детей, величины Mo1, Mo2 отличались от нормативных. Данные показатели, согласно методике кардиоинтервалографии, являются основными при оценке у детей исходного вегетативного тонуса, вегетативной реактивности. В целом, у обследованных детей выявлено больше половины случаев изменения исходного вегетативного тонуса, в несколько меньшем количестве случаев отмечено изменение вегетативной реактивности.

T ~		N <i>T</i> 1 /	\ \ \ \ \ \ \ \ \ \ \ \		_
	Ι Άρπιμα πουαραπαπι	$N/I \cap I / \cap$	1 1/10/1/01	ΤΙ ΠΑΤΑΙΙ ΠΑ Γ	CHAN COCHORODAILIA
таолина 4 —	Средние показатели	IVIO I II	1 10102061	V /IC/IC/VI IIC/ I	Олам ООСЛСЛОВания
- womingu =	ородино понизители		,,c - (-,	<i>j</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ogam country commit

Год	Школа	Mo1 (c)	N	fol(c)	Mo2	Mo2(c)	
	школа		девочки	мальчики	10102	девочки	мальчики
1994	12	0,69	0,65	0,67	0,58	0,55	0,57
1995	22	0,63	0,61	0,65	0,56	0,54	0,58
1997	15	0,66	0,67	0,65	0,60	0,60	0,60
2002	12	0,66	0,65	0,67	0,58	0,57	0,6
2002	22	0,69	0,68	0,69	0,58	0,58	0,59

При проведении исследований данных сердечного ритма группы детей установлено, что климато-погодные условия выступают в роли стимулятора работы адаптационно-компенсаторных механизмов организма человека. Обеспечение адаптации к изменяющимся климато-погодным условиям происходит по основным физиологическим законам с участием нейро-гуморального механизма. Нагрузка на организм должна рассчитываться и осуществляться в соответствии с индивидуальными показателями исходного уровня сердечно-сосудистой и вегетативной нервной системы.

Выводы

- 1. В результате проведенных исследований установлена зависимость величины кардиоинтервала как показателя синусового сердечного ритма у детей от климатических показателей: атмосферного давления, температуры воздуха, относительной влажности, продолжительности солнечного сияния, скорости ветра, возмущенности магнитного поля земли.
- 2. Связь основного показателя кардиоинтервалографии, моды с климатическими показателями отмечает изменения исходного вегетативного тонуса и вегетативной реактивности

под влиянием климато-погодных факторов и свидетельствует о напряжении адаптационно-компенсаторных механизмов.

3. Изменение климато-погодных условий является стимулятором работы адаптационнокомпенсаторных механизмов организма человека.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Головина, Е. Г. Влияние состояния атмосферы на некоторые характеристики здоровья человека / Е. Г. Головина, В. Н. Колмыков, О. П. Сибилев // Климат и здоровье человека: Междунар. симпозиум: тез. докл. ВМО/ВОЗ/ЮНЕП. Ленинград, 22–26 сент., 1986. Л.: Гидрометеоиздат, 1986. С. 59.
- 2. Головина, Е. Г. Исследование связи параметров атмосферы и показателей состояния здоровья человека / Е. Г. Головина, В. Н. Колмыков // Прикладная климатология: сб. тр. Всесоюз. совещания по прикладной климатологии, Ленинград, апр., 1988. Л., 1988. С. 75–80.
- 3. Влияние инфранизких колебаний атмосферного давления на показатели произвольного внимания / Л. А. Дидык [и др] // Физиология человека. 2000. Т. 26, № 4. С. 55–60.
- 4. *Рудницкая*, *А. С.* Изменение январских климатических параметров в г. Гомеле / А. С. Рудницкая, Е. И. Князева // Проблемы здоровья и экологии. 2008. №2 (16). С. 132–138.
- 5. *Румянцев*, *Г. И*. Гигиена: учеб. / под ред. акад. РАМН Г. И. Румянцева. 2-е изд., перераб. и доп. М.: ГЭОТАР-МЕД, 2002. С. 197–205.
- 6. Кардиоинтервалография в оценке реактивности и тяжести состояния больных детей: метод. рекомендации / М. Б. Кубергер [и др.]. М., 1985. С. 12.

Поступила 15.04.2009

УДК 612.43:612.64

СТАНОВЛЕНИЕ ЭНДОКРИННОЙ РЕГУЛЯЦИИ И ПРОЦЕССЫ ОРГАНОГЕНЕЗА У ПЛОДОВ ЧЕЛОВЕКА

А. А. Артишевский, И. Л. Кравцова

Белорусский государственный медицинский университет, г. Минск Гомельский государственный медицинский университет

В работе прослежены процессы закладки, дифференцировки, формообразования, функциональной активности в надпочечных железах и тонкой кишке. Исследованы корреляционные связи между информационными показателями компонентов надпочечников и эндокринного аппарата тонкой кишки. Выявлена ди-