2022;19(4):48-55

Проблемы здоровья и экологии / Health and Ecology Issues

УДК 616.379 – 008.64:616.12 – 008.46 https://doi.org/10.51523/2708-6011.2022-19-4-07

Клиническая значимость полиморфизма C(-344)Т гена альдостеронсинтазы (CYP11B2) в прогнозе кардиоренального синдрома при сахарном диабете

О. Н. Василькова¹, И. Ю. Пчелин², Я. А. Боровец¹, И. А. Васюхина³, Т. В. Мохорт⁴

¹Гомельский государственный медицинский университет, г. Гомель, Беларусь

²Санкт-Петербургский государственный университет, г. Санкт-Петербург, Россия

³Республиканский научно-практический центр радиационной медицины и экологии человека, г. Гомель, Беларусь

⁴Белорусский государственный медицинский университет, г. Минск, Беларусь

Резюме

Цель исследования. Оценить роль полиморфизма C(-344)T гена CYP11B2 в развитии кардиоренального синдрома (КРС) при сахарном диабете (СД).

Материалы и методы. Обследовано 270 пациентов с СД 1 и СД 2 типа в возрасте старше 25 лет. Всем пациентам проводился молекулярно-генетический анализ с использованием дезоксирибонуклеиновой кислоты (ДНК), выделенной из цельной венозной крови.

Результамы. Генотип ТТ был ассоциирован с риском развития таких проявлений КРС, как гипертрофия левого желудочка (отношение шансов (ОШ) — 2,64; 95 % ДИ (0,93–4,19)), хроническая сердечная недостаточность (ОШ — 4,26; 95 % ДИ (2,26–8,06)), субклинический атеросклероз (ОШ — 4,04; 95 % ДИ (1,89–8,58)), хроническая болезнь почек (ХБП) (ОШ — 10,77; 95 % ДИ (3,56–32,61)), а генотип СТ (ОШ — 3,28; 95 % ДИ (1,02–10,59)) — с риском ХБП.

Заключение. Между ренин-ангиотензин-альдостероновой системой (PAAC), кардиоваскулярными осложнениями и снижением функциональной способности почек имеются патогенетические связи. Для глубокого понимания сложных патогенетических механизмов развития и прогрессирования кардиоваскулярной и почечной патологии необходимы дальнейшие исследования.

Ключевые слова: сахарный диабет, кардиоренальный синдром, ренин-ангиотензин-альдостероновая система

Вклад авторов. Василькова О.Н., Пчелин И.Ю., Боровец Я.А.: концепция и дизайн исследования, сбор материала и создание базы данных, получение экспериментальных данных, статистическая обработка данных, редактирование, обсуждение данных; Васюхина И.А.: обзор публикаций по теме статьи; Мохорт Т.В.: проверка критически важного содержания, утверждение рукописи для публикации.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Источники финансирования. Работа выполнена в рамках научно-исследовательской работы по договору с Белорусским республиканским фондом фундаментальных исследований (БРФФИ) № М17РМ-113 от 01.06.2017 г. и при финансовой поддержке Российского фонда фундаментальных исследований (РФФИ) в рамках проекта 17-54-04080.

Для цитирования: Василькова ОН, Пчелин ИЮ, Боровец ЯА, Васюхина ИА, Мохорт ТВ. Клиническая значимость полиморфизма C(-344)T гена альдостеронсинтазы (CYP11B2) в прогнозе кардиоренального синдрома при сахарном диабете. Проблемы здоровья и экологии. 2022;19(4):48–55. DOI: https://doi.org/10.51523/2708-6011.2022-19-4-07

2022;19(4):48-55

Clinical significance of the T(-344)C polymorphism of the aldosterone synthase gene (CYP11B2) in the prognosis of cardiorenal syndrome in diabetes mellitus

Volha N. Vasilkova¹, Ivan Yu. Pchelin², Yana A. Borovets¹, Irina A. Vasukhina³, Tatsiana V. Mokhort⁴

¹Gomel State Medical University, Gomel, Belarus
²Saint Petersburg State University, Saint Petersburg, Russia
³Republican Scientific and Practical Center for Radiation Medicine and Human Ecology, Gomel, Belarus
⁴Belarusian State Medical University, Minsk, Belarus

Abstract

Objective. To evaluate the role of the T(-344)C polymorphism of CYP11B2 gene in the development of cardiorenal syndrome (CRS) in diabetes mellitus (DM).

Materials and methods. 270 patients with type 1 and type 2 diabetes aged over 25 years were examined. All patients underwent molecular genetic analysis using deoxyribonucleic acid isolated from whole venous blood.

Results. The TT genotype was associated with the risk of developing CRS manifestations such as left ventricular hypertrophy (odds ratio (OR) 2.64; 95% CI (0.93–4.19), chronic heart failure (OR 4.26; 95% CI (2.26 - 8.06), subclinical atherosclerosis (OR 4.04; 95% CI (1.89 - 8.58), chronic kidney disease (CKD) (OR 10.77; 95% CI (3.56 - 32.61), and the CT genotype (OR 3.28; 95% CI (1.02 – 10.59) with CKD risk..

Conclusion. There are pathogenetic associations between renin-angiotensin-aldosterone system, cardiovascular complications and a decrease of renal function. Further research is needed for a deep understanding of the complex pathogenetic mechanisms of the development and progression of cardiovascular and renal pathology.

Keywords: diabetes mellitus, cardiorenal syndrome, renin-angiotensin-aldosterone system

Author contributions. Vasilkova V.N., Pchelin I.Yu., Borovets Ya.A.: research concept and design, collecting material and creating a sample database, obtaining experimental data, statistical data processing, editing, discussing data; Vasukhina I.A.: reviewing publications on the topic of the article; Mokhort T.V.: checking critical content, approving the manuscript for publication.

Conflict of interests. Authors declare no conflict of interest.

Funding. This study was supported by the Belarusian Foundation for Basic Research (BFBR) (research project No. M17PM-113) and Russian Foundation for Basic Research (RFBR) (research project No.17-54-04080).

For citation: Vasilkova VN, Pchelin IYu, Borovets YaA, Vasukhina IA, Mokhort TV. Clinical significance of the T(-344) C polymorphism of the aldosterone synthase gene (CYP11B2) in the prognosis of cardiorenal syndrome in diabetes mellitus. Health and Ecology Issues. 2022;19(4):48–55. DOI: https://doi.org/10.51523/2708-6011.2022-19-4-07

Введение

В настоящее время большое внимание уделяется изучению КРС у пациентов с СД. Под термином «кардиоренальный синдром» понимают развитие патологии сердечно-сосудистой системы, связанной с поражением почек. Было установлено, что патология почек приводит к более быстрому прогрессированию атеросклеротических изменений сосудов, что нельзя объяснить только традиционными факторами риска, такими как АГ, дислипидемия, ожирение, курение и др. Несомненный интерес представляет изучение нефрокардиальных взаимоотношений при СД, поскольку практически у каждого третьего пациента и с СД 1 типа, и с СД 2 типа развивается диабетическая болезнь почек [1].

Ренин-ангиотензин-альдостероновая система играет важную роль в развитии сосудистого воспаления, оксидативного стресса, эндотелиальной дисфункции и пролиферации фибробла-

стов [2, 3]. Основными компонентами системы РААС являются ангиотензин II и альдостерон. Оба этих пептида стимулируют ангиогенез и пролиферацию фибробластов [4], а также приводят к индукции процессов воспаления [5]. Повышение уровня альдостерона способствует пролиферации фибробластов, подавляя апоптоз этих клеток в сердечной мышце, сосудах, почках. В последние годы доказана связь активации РААС с развитием фиброза миокарда [6], а именно: повышенная продукция ангиотензина II и альдостерона активирует фактор роста фибробластов, который опосредует ремоделирование миокарда и синтез коллагена фибробластами.

Известно, что синтез альдостерона из дезоксикортикостерона катализирует альдостеронсинтаза, за первичную структуру которого отвечает ген СҮР11В2 [7]. Известно несколько однонуклеотидных полиморфизмов в гене альдостеронсинтазы, но наиболее полно исследован полиморфизм, проявляющийся в замене цитозина на тимин в -344-м положении нуклеотидной последовательности, в регуляторной области гена. Этот участок является сайтом связывания стероидогенного фактора транскрипции SF-1, регулятора экспрессии гена альдостеронсинтазы. Согласно последним исследованиям, аллель Т приводит к усилению продукции альдостерона, что в свою очередь связано с АГ, а также фиброзом и гипертрофией миокарда [8]. Кроме того, гиперпродукция альдостерона способствует усилению экспрессии ингибитора активатора плазминогена-1, что влечет за собой развитие эндотелиальной дисфункции — причины кардиоваскулярных осложнений у пациентов с ХБП [9]. Промоторный полиморфизм гена -344Т/С СҮР11В2 может влиять на клинические исходы сердечной недостаточности или резистентной гипертензии через действие альдостерона при сердечно-сосудистых заболеваниях [10].

На сегодняшний день немногочисленные исследования по изучению концентрации альдостерона в сыворотке крови, связанные с этим промоторным полиморфизмом, были сосредоточены, главным образом, на сердечно-сосудистых заболеваниях, а не на его роли в прогрессировании ХБП. Поэтому большой интерес представляет изучение роли данного полиморфизма в развитии КРС у пациентов с СД.

Цель исследования

Оценить роль полиморфизма C(–344)Т гена CYP11B2 в развитии кардиоренального синдрома при сахарном диабете.

Материалы и методы

Обследовано 270 пациентов (86 мужчин и 184 женщины) с СД 1 типа (73 человека) и СД 2 типа (197 человек), медиана возраста — 61,00 [45,00; 66,00] года. Группу сравнения составили 50 практически здоровых лиц, сопоставимых по возрасту и полу с исследуемой группой с СД, медиана возраста — 60,50 [49,00; 67,00] года.

Молекулярно-генетический анализ проводили на базе молекулярно-генетической лаборатории государственного учреждения «Республиканский научно-практический центр радиационной медицины и экологии человека» с использованием ДНК, выделенной из цельной венозной крови. Кровь для анализа объемом ~1000 мкл помещали в центрифужную пробирку объемом 1,5 мл, содержащую 100 мкл 0,5 М ЭДТА (финальная концентрация — 50 мМ). До этапа выделения ДНК образцы крови хранили при температуре 4—6 °С в холодильнике. Смесь реагентов для проведения одной полимеразной цепной реакции (ПЦР) в объеме 25 мкл формировалась следующим об-

разом: 2,5 мкл 10 × Hot Start ПЦР буфер (200 мМ Трис-HCl pH 8,3, 200 мМ КСl, 50 мМ (NH $_4$)2SO $_4$), 1 мкл 10 мМ смеси dNTP, 0,1 мкл каждого 100 мкМ праймера, 1,5–2,5 мкл 25 мМ MgCl $_2$, 0,1 мкл Hot Start Таq-полимеразы (5ед./мкл), 1 мкл образца ДНК, вода ПЦР-качества до объема 25 мкл. Для ПЦР использовали специальные пробирки объемом 0,2 мл. ПЦР осуществляли в амплификаторе с подогреваемой крышкой — «GeneAmp 2400 PCR System».

Программа для амплификации была составлена следующим образом: начальная денатурация — 5 мин при 95 °C, затем 35 циклов — 30 с денатурация при 95 °C, 30 с отжиг при 53–68 °C и 40 с элонгация при 72 °C. В завершение — финальная элонгация 8 мин при 72 °C и охлаждение до 4 °C.

Для проведения рестрикции 10 мкл продуктов амплификации смешивали с 20 мкл реакционной смеси, содержащей 5 ед. соответствующего фермента, и инкубировали в твердотельном термостате при температуре 37 °C в течение 3 часов.

Визуализация продуктов ПЦР осуществлялась посредством агарозного гель-электрофореза и окраской бромистым этидием в камере SE-2 (Helicon) с источником питания Эльф-4 (ДНК-технология). Гелевым и электродным буфером был 1 × ТВЕ раствор рН 8,0 с 0,05 % бромистым этидием. Продукты амплификации объемом 7,5 мкл смешивали с 2,5 мкл загрузочного буфера (70 % водный раствор глицерина и 0,05 % бромфеноловый синий) и вносили в лунки 1,7 % агарозного геля. Электрофорез проводили в течение 30 мин при 200 В. Маркерами молекулярного веса являлись фрагменты ДНК из набора «50pb DNA Step Ladder» (Promega), масса которых составляла 50-800 пар нуклеотидов с шагом в 50 пар нуклеотидов. Визуализация результатов осуществлялась посредством трансиллюминатора UVT 1 (Biocom) и камеры для фотодокументирования гелей.

Лабораторное обследование включало оценку уровней цистатина С, креатинина в сыворотке крови с расчетом скорости клубочковой фильтрации (СКФ) по формуле СКD-EPI, определения уровня альбуминурии (соотношение альбумин/креатинин (А/К)), гомоцистеина, мочевой кислоты, натрийуретических пептидов (ВNР и NT-proBNP), провоспалительных цитокинов (С-реактивный белок (СРБ), высокочувствительный СРБ (вчСРБ), интерлейкин-6 (ИЛ-6), фактор роста фибробластов-23 (FGF-23)), уровней триглицеридов (ТГ).

С целью оценки состояния сосудистого русла всем пациентам было проведено ультразвуковое исследование брахиоцефальных сосу-

2022;19(4):48-55

дов (БЦА) на аппарате VIVID 9 (General Electric Medical Systems) с оценкой толщины комплекса интима-медиа (КИМ) и эхографическое исследование сердца с оценкой индекса массы миокарда левого желудочка (ИММ ЛЖ). Гипертрофию ЛЖ диагностировали при значениях ИММ ЛЖ у мужчин более 115 г/м², у женщин — более 95 г/м.

Пациенты с СД были стратифицированы на группы в соответствии с основными проявлениями КРС:

- в группу ХБП вошли пациенты с наличием любых маркеров повреждения почек, персистирующих в течение трех и более месяцев: альбуминурии/протеинурии, стойкого снижения СКФ до уровня менее 60 мл/мин/1,73 м²;
- в группу хронической сердечной недостаточности (ХСН) (с сохраненной фракцией выброса) пациенты с наличием в анамнезе ИБС, АГ, ХБП, ФВ ЛЖ ≥ 50 %, повышенными уровнями ВNР > 35 пг/мл и NT-proBNP > 125 пг/мл, гипертрофией ЛЖ по данным Эхо-КГ;
- в группу субклинического атеросклероза пациенты с толщиной КИМ > 0,9 мм.

Гипертрофию ЛЖ диагностировали при значениях ИММ ЛЖ у мужчин более 115 г/м², у жен-

щин — более 95 г/м.

Статистическую обработку полученных данных проводили с помощью программы smSTATA 14.2 for Mac (2018). В случае отсутствия нормального распределения количественные данные описывались с помощью медианы (Ме) и нижнего и верхнего квартилей (Q₄-Q₃). Сравнение трех и более групп по количественному показателю, имеющему нормальное распределение, выполнялось с помощью однофакторного дисперсионного анализа, апостериорные сравнения проводились с помощью критерия Тьюки (при условии равенства дисперсий), критерия Геймса — Хауэлла (при неравных дисперсиях). Для анализа связи между несколькими независимыми переменными и зависимой переменной проводился логистический регрессионный анализ. За уровень статистической значимости принимали р < 0,05.

Результаты и обсуждение

Результаты исследования полиморфизма гена альдостеронсинтазы (CYP11B2 C(–344)T) у пациентов с СД и группы сравнения представлены в таблице 1.

Таблица 1. Частота генотипов и аллелей по гену CYP11B2 в группах пациентов с СД и группы сравнения

Table 1. The frequency of genotypes and alleles for the CYP11B2 gene in groups of patients with diabetes and comparison group

Полиморфизм гена	Генотип/аллели	Основная группа (n = 270), %		Группа сравнения (n = 50), %		X ²	р
CYP11B2 C(-344)T	CC	51	19	15	30	7,96	0,019
	СТ	92	34	22	44		
	TT	127	47	13	26		
	С	194	36	67	58	19,73	< 0,001
	Т	346	64	48	42		

Согласно полученным данным, при сопоставлении распределения частоты генотипов и аллелей полиморфизма С(–344)Т гена СҮР11В2 в группе пациентов с СД зарегистрировано достоверное преобладание частоты аллеля Т и генотипа ТТ по сравнению с показателями в группе сравнения (64 и 47 % против 42 и 26 % соответственно).

Далее нами была рассмотрена ассоциация клинико-лабораторных параметров в зависимости от носительства различных генотипов гена СҮР11В2 у пациентов с СД и группы сравнения (рисунок 1). В ходе анализа выявлена зависимость встречаемости полиморфного гомозиготного генотипа ТТ с показателями почечной функции (креатинин, цистатин С, рСКФ_{СКD-ЕРІ}, рСКФ_{цистс}, А/К), гомоцистеином, мочевой кислотой, натрий-

уретическими пептидами, провоспалительными цитокинами (СРБ, вчСРБ, ИЛ-6, FGF-23), уровнем ТГ, толщиной КИМ и размерами левого желудочка в группе пациентов с СД.

По результатам данного исследования как у пациентов с СД, так и у здоровых лиц, имевших генотип ТТ, уровень гомоцистеина в сыворотке крови существенно превышал таковой у носителей генотипа СС (10,5 [8,3; 15,1] мкмоль/л и 8,3 [7,54; 10,9] мкмоль/л у здоровых лиц, р < 0,05; 8,76 [7,3; 11,4] мкмоль/л и 6,7 [5,7; 8,4] мкмоль/л соответственно, р < 0,05) (рисунок 1).

Уровень FGF-23 также статистически значимо был выше у носителей ТТ генотипа в обеих группах: в группе СД — 3,22 [0,77; 7,60] пмоль/л против 0,79 [0,07; 1,5] пмоль/л носителей СС генотипа, р < 0,05 и в группе сравнения — 2,4 [2,19;

2022;19(4):48-55

Проблемы здоровья и экологии / Health and Ecology Issues

2,6] пмоль/л и 0,39 [0,26; 0,49] пмоль/л соответственно, р < 0,05 (рисунок 1).

У носителей гетерозиготного генотипа СТ не выявлено статистических различий в концентрации гомоцистенна и FGF-23 от пациентов с генотипами СС — 8,44 [7,29; 11,2] мкмоль/л про-

тив 8,76 [7,3; 11,4] мкмоль/л и 0,75 [0,33; 2,19] пмоль/л против 0,79 [0,07; 1,5] пмоль/л соответственно у пациентов с СД; 6,7 [6,2;7,6] против 6,7 [5,7;8,4] мкмоль/л и 0,19 [0,7;0,79] пмоль/л против 0,39 [0,26;0,49] пмоль/л соответственно у пациентов с СД.

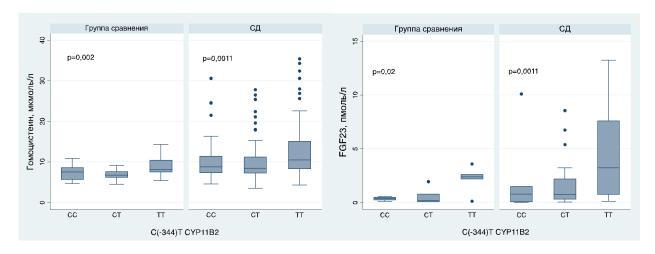


Рисунок 1. Уровни FGF-23 и гомоцистеина у пациентов с СД и группы сравнения в зависимости от генотипа C(–344)Т гена СҮР11В2

Figure 1. Levels of FGF-23 and homocysteine in patients with DM and comparison groups depending on the C(–344)T genotype of the CYP11B2 gene

Как было отмечено выше, в исследовании была выявлена ассоциация гомозиготного Т аллеля с низкой СКФ (рСКФ $_{\text{СКD-EPI}}$ 57 [20; 97] мл/мин/ 1,73 м 2 и рСКФ $_{\text{цистС}}$ 61,00 [19,00; 90,5] мл/мин/ 1,73 м 2), высоким креатинином (97 [71; 244] мкмоль/л), цистатином С (1,2 [0,79; 2,72] мг/л) и альбуминурией (7,5 [2,6; 26,4] мг/ммоль) по сравнению с пациентами — носителями СТ и СС генотипов.

Согласно литературным данным, такая ассоциация связана непосредственно с гиперпродукцией альдостерона, который и вызывает прогрессирование почечной патологии, стимулируя развитие фиброза путем активации нескольких механизмов. Первый заключается в воздействии альдостерона на систему фибринолиза и систему плазминогена [11]. И активатор плазминогена, и ингибитор активатора плазминогена 1-го типа локально синтезируются эндотелием сосудистой стенки. Сосудистый фибринолитический баланс поддерживается их конкурирующими эффектами, пока активация РААС не способствует экспрессии ингибитора активатора плазминогена 1-го типа [12].

Другой механизм почечного фиброзирования — стимуляция альдостероном минералкортикоидных рецепторов гладкой мускулатуры почечных сосудов и мезангиальных клеток. Результатом этого воздействия является воспали-

тельная реакция с развитием микроангиопатии и последующим формированием околососудистого и интерстициального фиброза. Повышенная продукция ингибитора активатора плазминогена 1-го типа и трансформирующего фактора роста вызывает фибропролиферативную деструкцию клубочков и интерстиция [13].

В данной работе не определялся уровень альдостерона, что является лимитирующим фактором данного этапа. Однако у пациентов, гомозиготных по ТТ генотипу, отмечался значимо более высокий уровень натрия сыворотки крови по сравнению с носителями СС и СТ генотипов (143,1 [142,1; 144,2] ммоль/л против 141,5 [141; 142,8] ммоль/л и 142,3 [141,65; 142,6] ммоль/л соответственно, р = 0,0001), что может косвенно свидетельствовать и о более высоких уровнях альдостерона у пациентов с ТТ генотипом.

В проведенном исследовании отмечена тесная связь размеров левого желудочка, толщиной КИМ с наличием Т аллели, которую также связывают с действием альдостерона. Причем, согласно ряду исследований, последний играет важную роль в патогенезе кардиоваскулярных нарушений независимо от уровня ангиотензина II [14]. Однако есть работы, в которых одними авторами обнаруживается ассоциация носительства аллеля С гена СҮР11В2 с массой миокарда, объемом полости левого желудочка у здоровых лиц [15], а

2022;19(4):48-55

в других не выявлено корреляции указанного полиморфизма ни с АГ, ни с уровнем альдостерона, ни с поражением органов-мишеней [16].

На клеточном уровне альдостерон участвует в активации фибробластов и развитии интерстициального миокардиального фиброза и, следовательно, в ремоделировании миокарда. Высказывается мнение, что локальная секреция альдостерона может играть роль в процессах постинфарктного ремоделирования.

Большой интерес представляет связь уровней FGF-23 и гомоцистеина с полиморфизмом С(-344)Т гена СҮР11В2, которая была получена в этой работе. Отмечены значимо высокие уровни данных параметров у носителей TT генотипа как среди пациентов с СД (3,22 [0,77; 7,60] пмоль/л и 10,5 [8,3; 15,1] мкмоль/л, так и среди группы сравнения (2,4 [2,19; 2,6] пмоль/л и 8,3 [7,54; 10,9] мкмоль/л). Возможное логическое объяснение полученных взаимосвязей реализуется посредством имеющихся сведений о перекрестной связи альдостерона и FGF-23. Как известно, при ХБП повышены как альдостерон, так и FGF-23, что прямо и (или) косвенно приводит к гипертрофии левого желудочка (ГЛЖ) и сердечной недостаточности. Dai и соавт. [17] продемонстрировали, что FGF-23 подавляет почечную экспрессию ангиотензин-превращающего фермента 2 (ACE2) у FGF-23-трансгенных мышей, что приводит к увеличению ангиотензина II. Кроме того, накапливающиеся данные указывают на то, что витамин D ингибирует активность РААС, подавляя транскрипцию гена ренина [18]. Поскольку FGF-23 подавляет активность витамина D, повышенный уровень FGF-23 в плазме приводит к активации РААС и, возможно, также альдостерона, который играет важную роль в поражении ССС при ХБП. Наконец, Італи и соавт. [19] показали, что уровни FGF-23 в сыворотке коррелируют с концентрацией альдостерона в плазме у пациентов с ХБП и сердечной недостаточностью. Исследование in vitro также демонстрирует, что транскрипция FGF-23 активируется альдостероном и ингибируется блокатором рецепторов

альдостерона (эплереноном) в культивируемых остеобластах [20]. Таким образом, хотя клинических данных, подтверждающих причинную роль альдостерона в продукции FGF-23 по-прежнему недостаточно, эти данные согласуются с представлением о том, что альдостерон способствует увеличению продукции FGF-23 при ХБП.

Информации о возможных механизмах взаимоотношений между гомоцистеином и РААС еще меньше. В ряде исследований продемонстрирована положительная ассоциация между гомоцистеином и уровнем альдостерона у пациентов с сердечно-сосудистыми заболеваниями [21, 22]. Даже было высказано предположение о возможном синтезе гомоцистеина в надпочечниках [23]. Однако на сегодняшний день молекулярное объяснение взаимоотношений гомоцистеина и альдостерона не может быть точно сформулировано, исходя из современных уровней знаний.

Есть предположение, что альдостерон может регулировать метаболизм холестерина. Эта связь представляется вполне очевидной, поскольку холестерин — предшественник альдостерона в процессе стероидогенеза. В исследовании гомозиготные носители Т аллели характеризовались высокими уровнями ТГ (2,0 [1,3; 2,48] ммоль/л) по сравнению с носителями СТ и СС генотипов (р = 0,0001). Ассоциаций с другими показателями липидного спектра крови получено не было. К тому же прием статинов исследуемыми пациентами может влиять на все обсуждаемые ассоциации параметров альдостеронемии и липидограммы при СД.

После стратификации пациентов с СД в соответствии с различными основными проявлениями КРС была показана связь для генотипа ТТ гена –314С/Т СҮР11В2 и ХСН (отношение шансов (ОШ) — 4,26; 95 % ДИ (2,26–8,06)), ГЛЖ (ОШ — 2,64; 95 % ДИ (0,93–4,19)), субклиническим атеросклерозом (ОШ — 4,04; 95 % ДИ (1,89–8,58)) и ХБП (ОШ — 10,77; 95 % ДИ (3,56–32,61)), при этом связь с риском развития ХБП была получена и для гетерозигот СТ (ОШ — 3,28; 95 % ДИ (1,02–10,59)) (таблица 2).

Таблица 2. Логистический регрессионный анализ полиморфизма C-344T гена CYP11B2 с проявлениями КРС

Table 2. Logistic regression analysis of C-344T polymorphism CYP11B2 gene with CRS manifestations

CYP11B2 C-344T	ХБП	XCH	Атеросклероз	глж	
	ОШ# (95 % ДИ)	ОШ# (95 % ДИ)	ОШ# (95 % ДИ)	ОШ# (95 % ДИ)	
TT	10,77 (3,56–32,61)*	4,26 (2,26–8,06)*	4,04 (1,89–8,58)*	2,64 (0,93–4,19)	
СТ	3,28 (1,02–10,59)*	1,19 (0,51–2,79)	1,98 (0,93–4,19)	1,03 (0,49–2,15)	

Достоверность различий показателей *p < 0,05 по отношению к генотипу СС, #с поправкой на пол, возраст, ИМТ

2022;19(4):48-55

Проблемы здоровья и экологии / Health and Ecology Issues

Таким образом, в группе пациентов с СД частота встречаемости генотипа СҮР11В2 ТТ была достоверно выше (47 %), чем в группе сравнения (26 %). Носители патологического генотипа ТТ имели достоверно высокий уровень гомоцистеина и FGF-23 как в основной группе, так и в группе сравнения, чем носители нейтрального генотипа СС. Генотип ТТ был ассоциирован с риском развития таких проявлений КРС, как ГЛЖ, XCH, субклинический атеросклероз, XБП, а генотип СТ — с риском ХБП.

Заключение

Частота носительства полиморфизма ТТ гена CYP11B2 была достоверно выше (47 %) в группе пациентов с СД, чем в группе сравнения (26 %).

Носители патологического генотипа ТТ имели достоверно высокий уровень гомоцистеина (10,5 [8,3; 15,1] мкмоль/л) и FGF-23 (3,22 [0,77; 7,60] пмоль/л) как в основной группе, так и в группе сравнения (8,3 [7,54; 10,9] мкмоль/л и 2,4 [2,19; 2,6] пмоль/л соответственно), чем носители нейтрального генотипа СС.

Генотип ТТ был ассоциирован с риском развития таких проявлений КРС, как ГЛЖ (ОШ — 2,64; 95 % ДИ (0,93–4,19)), ХСН (ОШ — 4,26; 95 % ДИ (2,26–8,06)), субклинический атеросклероз (ОШ — 4,04; 95 % ДИ (1,89–8,58)), ХБП (ОШ — 10,77; 95 % ДИ (3,56–32,61)), а генотип СТ (ОШ — 3,28; 95 % ДИ (1,02–10,59)) — с риском ХБП.

Список литературы / References

- 1. Htay T, Soe K, Lopez-Perez A, Doan AH, Romagosa MA, Aung K. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. *Curr Cardiol Rep.* 2019;21(6):45.
- DOI: https://doi.org/10.1007/s11886-019-1133-9
- 2. Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. *Int J Mol Sci.* 2021;22;22(13):6702.
- DOI: https://doi.org/10.3390/ijms22136702
- 3. Böckmann I, Lischka J, Richter B, Deppe J, Rahn A, Fischer DC, Heineke J, Haffner D, Leifheit-Nestler M. FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis. *Int J Mol Sci.* 2019;18;20(18):4634. DOI: https://doi.org/10.3390/ijms20184634
- 4. Pattacini L, Casali B, Boiardi L, et al. Angiotensin II protects fibroblast-like synoviocytes from apoptosis via the AT1-NF- kappaB pathway. *Rheumatology (Oxford)*. 2007 Aug;46(8):1252-1257.
- DOI: https://doi.org/10.1093/rheumatology/kem092
- 5. Seredyuk V. Role of aldosterone, mitogenic growth factors, apoptosis inducers and pulmonary arterial hypertension in the formation and progression of chronic pulmonary heart disease. *Pharm Innovat J.* 2013;2(5):36-40.
- 6. Naccarelli GV, Filippone EJ, Foy A. Do Mineralocorticoid Receptor Antagonists Suppress Atrial Fibrillation/Flutter? *J Am Coll Cardiol*. 2021;78(2):153-155.
- DOI: https://doi.org/10.1016/j.jacc.2021.04.080
- 7. Lu WH, Bayike M, Liu JW, Wang S, et al. Association between aldosterone synthase (CYP11B2)-344C/T polymorphism and atrial fibrillation among Han and Kazak residents of the Xinjiang region. *Int J Clin Exp Med*. 2015;8(4):5513-5519.
- 8. Abdel Ghafar MT. Association of aldosterone synthase CYP11B2 (-344C/T) gene polymorphism with essential hypertension and left ventricular hypertrophy in the Egyptian population. *Clin Exp Hypertens*. 2019;41(8):779-786. DOI: https://doi.org/10.1080/10641963.2018.1557679
- 9. Elgazzaz M, Lazartigues E. Epigenetic modifications of the renin-angiotensin system in cardiometabolic diseases. *Clin Sci (Lond)*. 2021;135(1):127-142.
- DOI: https://doi.org/10.1042/CS20201287
- 10. Abdel Ghafar MT. Association of aldosterone synthase CYP11B2 (-344C/T) gene polymorphism with essential hypertension and left ventricular hypertrophy in the Egyptian population. *Clin Exp Hypertens*. 2019;41(8):779-786. DOI: https://doi.org/10.1080/10641963.2018.1557679

- 11. Nishiyama A, Kobori H. Independent regulation of reninangiotensin-aldosterone system in the kidney. *Clin Exp Nephrol.* 2018;22(6):1231-1239.
- DOI: https://doi.org/10.1007/s10157-018-1567-1
- 12. Shrestha A, Che RC, Zhang AH. Role of Aldosterone in Renal Fibrosis. *Adv Exp Med Biol*. 2019;1165:325-346.
- DOI: https://doi.org/10.1007/978-981-13-8871-2 15
- 13. Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. *Pflugers Arch.* 2017 Nov;469(11):1415-1423.
- DOI: https://doi.org/10.1007/s00424-017-2014-y
- 14. Monticone S, D'Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, Mulatero P. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. *Lancet Diabetes Endocrinol*. 2018;6(1):41-50.
- DOI: https://doi.org/10.1016/S2213-8587(17)30319-4
- 15. Byrd JB, Auchus RJ, White PC. Aldosterone Synthase Promoter Polymorphism and Cardiovascular Phenotypes in a Large, Multiethnic Population-Based Study. *J Investig Med*. 2015;63(7):862-866.
- DOI: https://doi.org/10.1097/JIM.000000000000220
- 16. Yin C, Gu W, Gao Y, Li Z, Chen X, Li Z, Wen S. Association of the -344T/C polymorphism in aldosterone synthase gene promoter with left ventricular structure in Chinese Han: A meta-analysis. *Clin Exp Hypertens*. 2017;39(6):562-569. DOI: https://doi.org/10.1080/10641963.2017.1291660
- 17. Dai B, David V, Martin A, et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. *PLoS One*. 2012;7:e44161. DOI: https://doi.org/10.1371/journal.pone.0044161
- 18. Prud'homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. *Front Aging*. 2022;12(3):931331.
- DOI: https://doi.org/10.3389/fragi.2022.93133
- 19. Imazu M, Takahama H, Asanuma H, et al. Pathophysiological impact of serum fibroblast growth factor 23 in patients with non-ischemic cardiac disease and early chronic kidney disease. *Am J Phys.* 2014;307:H1504-1511.
- DOI: https://doi.org/10.1152/ajpheart.00331.2014
- 20. Zhang B, Umbach AT, Chen H, et al. Up-regulation of FGF23 release by aldosterone. *Biochem Biophy Res Commun.* 2016:470:384-390.
- DOI: https://doi.org/10.1016/j.bbrc.2016.01.034

2022;19(4):48-55

21. Syed SB, Qureshi MA. Association of aldosterone and cortisol with cardiovascular risk factors in prehypertension stage. *Int J Hypertens*. 2012;2012:906327.

DOI: https://doi.org/10.1155/2012/906327

22. Sjöberg B, Anderstam B, Suliman M, Alvestrand A. Plasma reduced homocysteine and other aminothiol concentrations in patients with CKD. *Am J Kidney Dis.* 2006;47(1):60-71.

DOI: https://doi.org/10.1053/j.ajkd.2005.09.032

23. Karolczak K, Kubalczyk P, Glowacki R, Pietruszynski R, Watala C. Aldosterone modulates blood homocysteine and cholesterol in coronary artery disease patients - a possible impact on atherothrombosis? *Physiol Res.* 2018;4;67(2):197-207. DOI: https://doi.org/10.33549/physiolres.933668

Информация об авторах / Information about the authors

Василькова Ольга Николаевна, к.м.н., доцент кафедры внутренних болезней № 1 с курсом эндокринологии, УО «Гомельский государственный медицинский университет», Гомель, Беларусь

ORCID: https://orcid.org/0000-0002-6956-9014

e-mail: olga.n.vasilkova@gmail.com

Пчелин Иван Юрьевич, к.м.н., доцент, выполняющий лечебную работу кафедры факультетской терапии, ФГБОУ ВО «Санкт-Петербургский государственный университет», Санкт-Петербург, Россия

ORCID: https://orcid.org/0000-0001-8529-3890

e-mail: ewan2008@bk.ru

Боровец Яна Анатольевна, ассистент кафедры внутренних болезней № 1 с курсом эндокринологии, УО «Гомельский государственный медицинский университет», Гомель, Беларусь

ORCID: https://orcid.org/0000-0001-8884-1637

e-mail: yana.gh.l.br@gmail.com

Васюхина Ирина Александровна, врач-эндокринолог, ГУ «Республиканский научно-практический центр радиационной медицины и экологии человека», Гомель, Беларусь

ORCID: https://orcid.org/0000-0002-9740-9915 e-mail: yasyhina20081978@gmail.com

Мохорт Татьяна Вячеславовна, д.м.н., профессор, заведующий кафедрой эндокринологии, УО «Белорусский государственный медицинский университет», Минск, Беларусь

ORCID: https://orcid.org/0000-0002-5040-3460

e-mail: tatsianamokhort@gmail.com

Принята к публикации / Revised 19.11.2022

Volha N. Vasilkova, Candidate of Medical Sciences, Associate Professor of the Department of Internal Diseases №1 with a course of Endocrinology, Gomel State Medical University,

ORCID: https://orcid.org/0000-0002-6956-9014

e-mail: olga.n.vasilkova@gmail.com

Ivan Yu. Pchelin, Candidate of Medical Sciences, Associate Professor performing clinical work at the Department of Faculty Therapy, St. Petersburg State University, St. Petersburg

ORCID: https://orcid.org/0000-0001-8529-3890

e-mail: ewan2008@bk.ru

Yana A. Borovets, Assistant of the Department of Internal Diseases №1 with a course of Endocrinology, Gomel State Medical University

ORCID: https://orcid.org/0000-0001-8884-1637

e-mail: yana.gh.l.br@gmail.com

Irina A. Vasukhina, Endocrinologist of the Republican Research Center for Radiation Medicine and Human Ecology,

ORCID: https://orcid.org/0000-0002-9740-9915

e-mail: vasyhina20081978@gmail.com

Tatsiana V. Mokhort, Doctor of Medical Sciences, Professor, Head of the Department of Endocrinology, Belarusian State Medical University

ORCID: https://orcid.org/0000-0002-5040-3460

e-mail: tatsianamokhort@gmail.com

Автор, ответственный за переписку / Corresponding author

Василькова Ольга Николаевна e-mail: olga.n.vasilkova@gmail.com

Поступила в редакцию / Received 05.10.2022 Поступила после рецензирования / Accepted 17.10.2022 Volha N. Vasilkova e-mail: olga.n.vasilkova@gmail.com